Derivada de la tercera raíz de x 2. Derivada de una función compuesta


Derivación de la fórmula para la derivada de una función potencia (xa la potencia de a). Se consideran las derivadas de las raíces de x. La fórmula para la derivada de una función de potencia de orden superior. Ejemplos de cálculo de derivadas.

La derivada de x elevado a a es a por x elevado a a menos uno:
(1) .

La derivada de la n-ésima raíz de x a la m-ésima potencia es:
(2) .

Derivación de la fórmula para la derivada de una función potencia

Caso x > 0

Considere una función de potencia de la variable x con exponente a :
(3) .
Aquí a es un número real arbitrario. Consideremos primero el caso.

Para encontrar la derivada de la función (3), usamos las propiedades de la función potencia y la transformamos a la siguiente forma:
.

Ahora encontramos la derivada aplicando:
;
.
Aquí .

La fórmula (1) está probada.

Derivación de la fórmula para la derivada de la raíz del grado n de x al grado m

Ahora considere una función que es la raíz de la siguiente forma:
(4) .

Para encontrar la derivada, convertimos la raíz en una función de potencia:
.
Comparando con la fórmula (3), vemos que
.
Después
.

Por la fórmula (1) encontramos la derivada:
(1) ;
;
(2) .

En la práctica, no es necesario memorizar la fórmula (2). Es mucho más conveniente convertir primero las raíces en funciones de potencia y luego encontrar sus derivadas usando la fórmula (1) (ver ejemplos al final de la página).

Caso x = 0

Si , entonces la función exponencial también está definida para el valor de la variable x = 0 . Encontremos la derivada de la función (3) para x = 0 . Para hacer esto, usamos la definición de un derivado:
.

Sustituye x = 0 :
.
En este caso, por derivada nos referimos al límite de la derecha para el cual .

Entonces encontramos:
.
De esto se puede ver que en , .
A , .
A , .
Este resultado también se obtiene por la fórmula (1):
(1) .
Por lo tanto, la fórmula (1) también es válida para x = 0 .

caso x< 0

Considere la función (3) nuevamente:
(3) .
Para algunos valores de la constante a, también se define para valores negativos de la variable x. Es decir, sea a un número racional. Entonces se puede representar como una fracción irreducible:
,
donde m y n son números enteros sin divisor común.

Si n es impar, entonces la función exponencial también se define para valores negativos de la variable x. Por ejemplo, para n = 3 y m = 1 tenemos la raíz cúbica de x:
.
También se define para valores negativos de x.

Encontremos la derivada de la función potencia (3) para y para valores racionales de la constante a, para los cuales está definida. Para ello, representamos x de la siguiente forma:
.
Después ,
.
Encontramos la derivada sacando la constante del signo de la derivada y aplicando la regla de diferenciación de una función compleja:

.
Aquí . Pero
.
Porque entonces
.
Después
.
Es decir, la fórmula (1) también es válida para:
(1) .

Derivados de órdenes superiores

Ahora encontramos las derivadas de orden superior de la función potencia
(3) .
Ya hemos encontrado la derivada de primer orden:
.

Sacando la constante a del signo de la derivada, encontramos la derivada de segundo orden:
.
Del mismo modo, encontramos derivadas de tercer y cuarto orden:
;

.

A partir de aquí es claro que derivada de un enésimo orden arbitrario tiene la siguiente forma:
.

Darse cuenta de si a es un numero natural, , entonces la n-ésima derivada es constante:
.
Entonces todas las derivadas posteriores son iguales a cero:
,
a .

Ejemplos de derivados

Ejemplo

Encuentra la derivada de la función:
.

Solución

Convirtamos las raíces en potencias:
;
.
Entonces la función original toma la forma:
.

Encontramos derivadas de grados:
;
.
La derivada de una constante es cero:
.

En el que analizamos los derivados más simples, y también nos familiarizamos con las reglas de diferenciación y algunas técnicas para encontrar derivados. Por lo tanto, si no eres muy bueno con las derivadas de funciones o algunos puntos de este artículo no están del todo claros, entonces primero lee la lección anterior. Sintonice un estado de ánimo serio: el material no es fácil, pero intentaré presentarlo de manera simple y clara.

En la práctica, tienes que lidiar con la derivada de una función compleja muy a menudo, incluso diría que casi siempre, cuando te dan tareas para encontrar derivadas.

Miramos en la tabla la regla (No. 5) para diferenciar una función compleja:

Entendemos. En primer lugar, echemos un vistazo a la notación. Aquí tenemos dos funciones - y , y la función, en sentido figurado, está anidada en la función . Una función de este tipo (cuando una función está anidada dentro de otra) se denomina función compleja.

llamaré a la función función externa, y la función – función interna (o anidada).

! Estas definiciones no son teóricas y no deben aparecer en el diseño final de las asignaciones. Utilizo las expresiones informales "función externa", función "interna" solo para facilitarle la comprensión del material.

Para aclarar la situación, considere:

Ejemplo 1

Encontrar la derivada de una función

Debajo del seno, no solo tenemos la letra "x", sino la expresión completa, por lo que encontrar la derivada inmediatamente de la tabla no funcionará. También notamos que es imposible aplicar las primeras cuatro reglas aquí, parece haber una diferencia, pero el hecho es que es imposible "desgarrar" el seno:

En este ejemplo, ya de mis explicaciones, es intuitivamente claro que la función es una función compleja y el polinomio es una función interna (incrustación) y una función externa.

Primer paso, que debe realizarse cuando encontrar la derivada de una función compleja es entender qué función es interna y cuál es externa.

En el caso de ejemplos simples, parece claro que un polinomio está anidado debajo del seno. Pero, ¿y si no es obvio? ¿Cómo determinar exactamente qué función es externa y cuál es interna? Para ello, propongo utilizar la siguiente técnica, que puede llevarse a cabo mentalmente o sobre un borrador.

Imaginemos que necesitamos calcular el valor de la expresión con una calculadora (en lugar de una, puede ser cualquier número).

¿Qué calculamos primero? Ante todo deberá realizar la siguiente acción: , por lo que el polinomio será una función interna:

En segundo lugar necesitará encontrar, por lo que el seno - será una función externa:

Después de que nosotros COMPRENDER con funciones internas y externas, es hora de aplicar la regla de diferenciación de funciones compuestas .

Empezamos a decidir. de la lección ¿Cómo encontrar la derivada? recordamos que el diseño de la solución de cualquier derivada siempre comienza así - encerramos la expresión entre paréntesis y ponemos un trazo en la parte superior derecha:

Primero encontramos la derivada de la función externa (seno), miramos la tabla de derivadas de funciones elementales y observamos que . Todas las fórmulas tabulares son aplicables incluso si "x" se reemplaza por una expresión compleja, en este caso:

Tenga en cuenta que la función interna no ha cambiado, no lo tocamos.

Bueno, es bastante obvio que

El resultado de aplicar la fórmula limpio se ve así:

El factor constante generalmente se coloca al comienzo de la expresión:

Si hay algún malentendido, anote la decisión en un papel y lea las explicaciones nuevamente.

Ejemplo 2

Encontrar la derivada de una función

Ejemplo 3

Encontrar la derivada de una función

Como siempre, escribimos:

Averiguamos dónde tenemos una función externa y dónde una interna. Para ello, intentamos (mentalmente o en un borrador) calcular el valor de la expresión para . ¿Qué hay que hacer primero? En primer lugar, debe calcular a qué es igual la base:, lo que significa que el polinomio es la función interna:

Y, solo entonces se realiza la exponenciación, por lo tanto, la función potencia es una función externa:

Según la fórmula , primero necesitas encontrar la derivada de la función externa, en este caso, el grado. Estamos buscando la fórmula deseada en la tabla:. Repetimos de nuevo: cualquier fórmula tabular es válida no solo para "x", sino también para una expresión compleja. Así, el resultado de aplicar la regla de diferenciación de una función compleja Siguiente:

Vuelvo a recalcar que cuando tomamos la derivada de la función exterior, la función interior no cambia:

Ahora queda encontrar una derivada muy simple de la función interna y “peinar” un poco el resultado:

Ejemplo 4

Encontrar la derivada de una función

Este es un ejemplo de auto-resolución (respuesta al final de la lección).

Para consolidar la comprensión de la derivada de una función compleja, daré un ejemplo sin comentarios, trate de resolverlo por su cuenta, razón, ¿dónde está la función externa y dónde está la función interna, por qué las tareas se resuelven de esa manera?

Ejemplo 5

a) Hallar la derivada de una función

b) Hallar la derivada de la función

Ejemplo 6

Encontrar la derivada de una función

Aquí tenemos una raíz, y para poder diferenciar la raíz, se debe representar como un grado. Por lo tanto, primero llevamos la función a la forma adecuada para la derivación:

Al analizar la función, llegamos a la conclusión de que la suma de tres términos es una función interna y la exponenciación es una función externa. Aplicamos la regla de diferenciación de una función compleja :

El grado se representa nuevamente como un radical (raíz), y para la derivada de la función interna, aplicamos una regla simple para diferenciar la suma:

Listo. También puedes llevar la expresión a un denominador común entre paréntesis y escribir todo como una fracción. Es hermoso, por supuesto, pero cuando se obtienen derivadas largas engorrosas, es mejor no hacer esto (es fácil confundirse, cometer un error innecesario y será un inconveniente para el maestro verificar).

Ejemplo 7

Encontrar la derivada de una función

Este es un ejemplo de auto-resolución (respuesta al final de la lección).

Es interesante notar que a veces, en lugar de la regla para derivar una función compleja, se puede usar la regla para derivar un cociente , pero tal solución parecerá una perversión inusual. Aquí está un ejemplo típico:

Ejemplo 8

Encontrar la derivada de una función

Aquí puedes usar la regla de derivación del cociente , pero es mucho más rentable encontrar la derivada mediante la regla de diferenciación de una función compleja:

Preparamos la función para la diferenciación: quitamos el signo menos de la derivada y elevamos el coseno al numerador:

El coseno es una función interna, la exponenciación es una función externa.
Usemos nuestra regla :

Encontramos la derivada de la función interna, restablecemos el coseno hacia abajo:

Listo. En el ejemplo considerado, es importante no confundirse en los signos. Por cierto, intenta resolverlo con la regla , las respuestas deben coincidir.

Ejemplo 9

Encontrar la derivada de una función

Este es un ejemplo de auto-resolución (respuesta al final de la lección).

Hasta ahora, hemos considerado casos en los que solo teníamos un anidamiento en una función compleja. En las tareas prácticas, a menudo puede encontrar derivados, donde, como muñecos anidados, uno dentro del otro, se anidan 3 o incluso 4-5 funciones a la vez.

Ejemplo 10

Encontrar la derivada de una función

Entendemos los archivos adjuntos de esta función. Tratamos de evaluar la expresión usando el valor experimental. ¿Cómo contaríamos con una calculadora?

Primero necesitas encontrar, lo que significa que el arcoseno es el anidamiento más profundo:

Este arcoseno de la unidad debe elevarse al cuadrado:

Y finalmente, elevamos el siete a la potencia:

Es decir, en este ejemplo tenemos tres funciones diferentes y dos anidamientos, mientras que la función más interna es el arcoseno y la función más externa es la función exponencial.

empezamos a decidir

En concordancia con reglas primero necesitas tomar la derivada de la función exterior. Miramos la tabla de derivadas y encontramos la derivada de la función exponencial: La única diferencia es que en lugar de "x" tenemos una expresión compleja, que no niega la validez de esta fórmula. Entonces, el resultado de aplicar la regla de diferenciación de una función compleja Siguiente.

La operación de encontrar una derivada se llama diferenciación.

Como resultado de resolver problemas de encontrar derivadas de las funciones más simples (y no muy simples) por definición de la derivada como límite de la razón de incremento a incremento del argumento, apareció una tabla de derivadas y reglas de diferenciación definidas con precisión. Isaac Newton (1643-1727) y Gottfried Wilhelm Leibniz (1646-1716) fueron los primeros en trabajar en el campo de la búsqueda de derivadas.

Por lo tanto, en nuestro tiempo, para encontrar la derivada de cualquier función, no es necesario calcular el límite mencionado anteriormente de la relación entre el incremento de la función y el incremento del argumento, sino que solo es necesario usar la tabla de derivadas y las reglas de diferenciación. El siguiente algoritmo es adecuado para encontrar la derivada.

Para encontrar la derivada, necesitas una expresión debajo del signo de trazo desglosar funciones simples y determinar qué acciones (producto, suma, cociente) estas funciones están relacionadas. Además, encontramos las derivadas de funciones elementales en la tabla de derivadas y las fórmulas para las derivadas del producto, la suma y el cociente, en las reglas de diferenciación. La tabla de derivadas y las reglas de derivación se dan después de los dos primeros ejemplos.

Ejemplo 1 Encontrar la derivada de una función

Solución. A partir de las reglas de derivación encontramos que la derivada de la suma de funciones es la suma de las derivadas de funciones, es decir

De la tabla de derivadas, encontramos que la derivada de "X" es igual a uno, y la derivada del seno es coseno. Sustituimos estos valores en la suma de derivadas y encontramos la derivada requerida por la condición del problema:

Ejemplo 2 Encontrar la derivada de una función

Solución. Deriva como derivada de la suma, en la que el segundo término con un factor constante, se puede sacar del signo de la derivada:

Si todavía hay preguntas sobre de dónde viene algo, por regla general, se aclaran después de leer la tabla de derivadas y las reglas de diferenciación más simples. Vamos a ellos ahora mismo.

Tabla de derivadas de funciones simples

1. Derivada de una constante (número). Cualquier número (1, 2, 5, 200...) que esté en la expresión de la función. Siempre cero. Es muy importante recordar esto, ya que se requiere muy a menudo
2. Derivada de la variable independiente. Más a menudo "x". Siempre igual a uno. Esto también es importante recordar
3. Derivada de grado. Al resolver problemas, debe convertir las raíces no cuadradas en una potencia.
4. Derivada de una variable a la potencia de -1
5. Derivada de la raíz cuadrada
6. Derivada del seno
7. Derivada del coseno
8. Derivada tangente
9. Derivada de cotangente
10. Derivada del arcoseno
11. Derivada del arco coseno
12. Derivada del arco tangente
13. Derivada de la tangente inversa
14. Derivada del logaritmo natural
15. Derivada de una función logarítmica
16. Derivada del exponente
17. Derivada de función exponencial

Reglas de diferenciación

1. Derivada de la suma o diferencia
2. Derivado de un producto
2a. Derivada de una expresión multiplicada por un factor constante
3. derivada del cociente
4. Derivada de una función compleja

Regla 1si funciones

son diferenciables en algún punto, entonces en el mismo punto las funciones

y

aquellos. la derivada de la suma algebraica de funciones es igual a la suma algebraica de las derivadas de estas funciones.

Consecuencia. Si dos funciones derivables difieren en una constante, entonces sus derivadas son, es decir.

Regla 2si funciones

son diferenciables en algún punto, entonces su producto también es diferenciable en el mismo punto

y

aquellos. la derivada del producto de dos funciones es igual a la suma de los productos de cada una de estas funciones y la derivada de la otra.

Consecuencia 1. El factor constante se puede sacar del signo de la derivada:

consecuencia 2. La derivada del producto de varias funciones diferenciables es igual a la suma de los productos de la derivada de cada uno de los factores y todos los demás.

Por ejemplo, para tres multiplicadores:

regla 3si funciones

diferenciable en algún punto y , entonces en este punto su cociente también es diferenciable.u/v, y

aquellos. la derivada de un cociente de dos funciones es igual a una fraccion cuyo numerador es la diferencia entre los productos del denominador y la derivada del numerador y el numerador y la derivada del denominador, y el denominador es el cuadrado del numerador anterior .

Dónde buscar en otras páginas

Al encontrar la derivada del producto y el cociente en problemas reales, siempre es necesario aplicar varias reglas de diferenciación a la vez, por lo que hay más ejemplos de estas derivadas en el artículo."Derivada de un producto y un cociente " .

Comentario.¡No debe confundir una constante (es decir, un número) como un término en la suma y como un factor constante! En el caso de un término, su derivada es igual a cero, y en el caso de un factor constante, se saca del signo de las derivadas. Este es un error típico que ocurre en la etapa inicial del estudio de las derivadas, pero a medida que el estudiante promedio resuelve varios ejemplos de uno y dos componentes, el estudiante promedio ya no comete este error.

Y si al derivar un producto o un cociente tienes un término tu"v, en donde tu- un número, por ejemplo, 2 o 5, es decir, una constante, entonces la derivada de este número será igual a cero y, por lo tanto, todo el término será igual a cero (tal caso se analiza en el ejemplo 10) .

Otro error común es la solución mecánica de la derivada de una función compleja como derivada de una función simple. Es por eso derivada de una función compleja dedicado a un artículo aparte. Pero primero aprenderemos a encontrar derivadas de funciones simples.

En el camino, no puedes prescindir de las transformaciones de expresiones. Para hacer esto, es posible que deba abrir en nuevos manuales de Windows Acciones con potencias y raíces. y Acciones con fracciones.

Si está buscando soluciones para derivadas con potencias y raíces, es decir, cuando la función se ve como entonces sigue la lección" Derivada de la suma de fracciones con potencias y raíces ".

Si tienes una tarea como , entonces tienes un trabajo "Derivadas de funciones trigonométricas simples".

Ejemplos paso a paso: cómo encontrar la derivada

Ejemplo 3 Encontrar la derivada de una función

Solución. Determinamos las partes de la expresión de la función: la expresión completa representa el producto, y sus factores son sumas, en la segunda de las cuales uno de los términos contiene un factor constante. Aplicamos la regla de diferenciación del producto: la derivada del producto de dos funciones es igual a la suma de los productos de cada una de estas funciones y la derivada de la otra:

A continuación, aplicamos la regla de derivación de la suma: la derivada de la suma algebraica de funciones es igual a la suma algebraica de las derivadas de estas funciones. En nuestro caso, en cada suma, el segundo término con signo menos. En cada suma vemos tanto una variable independiente, cuya derivada es igual a uno, como una constante (número), cuya derivada es igual a cero. Entonces, "x" se convierte en uno, y menos 5, en cero. En la segunda expresión, "x" se multiplica por 2, entonces multiplicamos dos por la misma unidad que la derivada de "x". Obtenemos los siguientes valores de derivadas:

Sustituimos las derivadas encontradas en la suma de productos y obtenemos la derivada de toda la función requerida por la condición del problema:

Ejemplo 4 Encontrar la derivada de una función

Solución. Estamos obligados a encontrar la derivada del cociente. Aplicamos la fórmula para diferenciar un cociente: la derivada de un cociente de dos funciones es igual a una fracción cuyo numerador es la diferencia entre los productos del denominador y la derivada del numerador y el numerador y la derivada del denominador, y el denominador es el cuadrado del numerador anterior. Obtenemos:

Ya hemos encontrado la derivada de los factores en el numerador en el Ejemplo 2. Tampoco olvidemos que el producto, que es el segundo factor en el numerador en el ejemplo actual, se toma con un signo menos:

Si está buscando soluciones a problemas en los que necesita encontrar la derivada de una función, donde hay una pila continua de raíces y grados, como, por ejemplo, entonces bienvenido a clase "La derivada de la suma de fracciones con potencias y raíces".

Si necesitas aprender más sobre las derivadas de senos, cosenos, tangentes y otras funciones trigonométricas, es decir, cuando la función se ve como , entonces tienes una lección "Derivadas de funciones trigonométricas simples".

Ejemplo 5 Encontrar la derivada de una función

Solución. En esta función vemos un producto, uno de cuyos factores es la raíz cuadrada de la variable independiente, con cuya derivada nos familiarizamos en la tabla de derivadas. De acuerdo con la regla de diferenciación del producto y el valor tabular de la derivada de la raíz cuadrada, obtenemos:

Ejemplo 6 Encontrar la derivada de una función

Solución. En esta función vemos el cociente, cuyo dividendo es la raíz cuadrada de la variable independiente. Según la regla de derivación del cociente, que repetimos y aplicamos en el ejemplo 4, y el valor tabular de la derivada de la raíz cuadrada, obtenemos:

Para deshacerse de la fracción en el numerador, multiplique el numerador y el denominador por .

Selección del editor
HISTORIA DE RUSIA Tema No. 12 de la URSS en los años 30 industrialización en la URSS La industrialización es el desarrollo industrial acelerado del país, en ...

PRÓLOGO "... Así que en estos lugares, con la ayuda de Dios, recibimos un pie, entonces te felicitamos", escribió Pedro I con alegría a San Petersburgo el 30 de agosto...

Tema 3. El liberalismo en Rusia 1. La evolución del liberalismo ruso El liberalismo ruso es un fenómeno original basado en ...

Uno de los problemas más complejos e interesantes de la psicología es el problema de las diferencias individuales. Es difícil nombrar solo uno...
Guerra Ruso-Japonesa 1904-1905 fue de gran importancia histórica, aunque muchos pensaron que carecía absolutamente de sentido. Pero esta guerra...
Las pérdidas de los franceses por las acciones de los partisanos, aparentemente, nunca se contarán. Aleksey Shishov habla sobre el "club de la guerra popular", ...
Introducción En la economía de cualquier estado, desde que apareció el dinero, la emisión ha jugado y juega todos los días versátil, y en ocasiones...
Pedro el Grande nació en Moscú en 1672. Sus padres son Alexei Mikhailovich y Natalia Naryshkina. Peter fue criado por niñeras, educación en ...
Es difícil encontrar alguna parte del pollo, a partir de la cual sería imposible hacer una sopa de pollo. Sopa de pechuga de pollo, sopa de pollo...