Vzorec na výpočet pravdepodobnosti udalosti v zlomkoch. Pravdepodobnosť udalosti


"Náhodnosť nie je náhodná"... Znie to, ako povedal filozof, ale v skutočnosti je štúdium nehôd osudom veľkej vedy matematiky. V matematike je náhoda teóriou pravdepodobnosti. V článku budú uvedené vzorce a príklady úloh, ako aj hlavné definície tejto vedy.

Čo je teória pravdepodobnosti?

Teória pravdepodobnosti je jednou z matematických disciplín, ktorá študuje náhodné udalosti.

Aby to bolo trochu jasnejšie, uveďme malý príklad: ak hodíte mincu, môže vám padať hlava alebo chvost. Pokiaľ je minca vo vzduchu, obe tieto možnosti sú možné. To znamená, že pravdepodobnosť možných následkov koreluje 1:1. Ak je jedna vytiahnutá z balíčka s 36 kartami, pravdepodobnosť bude označená ako 1:36. Zdalo by sa, že nie je čo skúmať a predpovedať, najmä pomocou matematických vzorcov. Napriek tomu, ak opakujete určitú činnosť mnohokrát, môžete identifikovať určitý vzorec a na jeho základe predpovedať výsledok udalostí v iných podmienkach.

Aby sme zhrnuli všetko vyššie uvedené, teória pravdepodobnosti v klasickom zmysle študuje možnosť výskytu jednej z možných udalostí v numerickom zmysle.

Zo stránok histórie

Teória pravdepodobnosti, vzorce a príklady prvých úloh sa objavili v ďalekom stredoveku, keď sa prvýkrát objavili pokusy predpovedať výsledok kartových hier.

Spočiatku teória pravdepodobnosti nemala nič spoločné s matematikou. Bolo to odôvodnené empirickými faktami alebo vlastnosťami udalosti, ktoré bolo možné reprodukovať v praxi. Prvé práce v tejto oblasti ako matematickej disciplíne sa objavili v 17. storočí. Zakladateľmi boli Blaise Pascal a Pierre Fermat. Dlho študovali hazardné hry a videli určité vzorce, o ktorých sa rozhodli povedať verejnosti.

Rovnakú techniku ​​vynašiel Christian Huygens, aj keď nepoznal výsledky výskumu Pascala a Fermata. Zaviedol pojem „teória pravdepodobnosti“, vzorce a príklady, ktoré sú považované za prvé v histórii disciplíny.

Nemenej dôležité sú diela Jacoba Bernoulliho, Laplaceove a Poissonove teorémy. Z teórie pravdepodobnosti urobili skôr matematickú disciplínu. Teória pravdepodobnosti, vzorce a príklady základných úloh dostali dnešnú podobu vďaka Kolmogorovovým axiómam. V dôsledku všetkých zmien sa teória pravdepodobnosti stala jedným z matematických odvetví.

Základné pojmy teórie pravdepodobnosti. Vývoj

Hlavným konceptom tejto disciplíny je „event“. Udalosti sú troch typov:

  • Spoľahlivý. Tie, ktoré sa aj tak stanú (minca padne).
  • nemožné. Udalosti, ktoré sa v žiadnom scenári nestanú (minca zostane visieť vo vzduchu).
  • Náhodný. Tie, ktoré sa stanú alebo nestanú. Môžu byť ovplyvnené rôznymi faktormi, ktoré je veľmi ťažké predvídať. Ak hovoríme o minci, potom náhodné faktory, ktoré môžu ovplyvniť výsledok: fyzikálne vlastnosti mince, jej tvar, počiatočná poloha, sila hodu atď.

Všetky udalosti v príkladoch sú označené veľkými latinskými písmenami, s výnimkou R, ktoré má inú úlohu. Napríklad:

  • A = "študenti prišli na prednášku."
  • Ā = „študenti neprišli na prednášku“.

V praktických úlohách sa udalosti zvyčajne zaznamenávajú slovom.

Jednou z najdôležitejších charakteristík udalostí je ich rovnaká možnosť. To znamená, že ak si hodíte mincou, sú možné všetky varianty počiatočného pádu, kým nepadne. Ale udalosti tiež nie sú rovnako pravdepodobné. Stáva sa to vtedy, keď niekto zámerne ovplyvňuje výsledok. Napríklad „označené“ hracie karty alebo kocky, pri ktorých je posunuté ťažisko.

Udalosti sú tiež kompatibilné a nekompatibilné. Kompatibilné udalosti nevylučujú vzájomný výskyt. Napríklad:

  • A = "študent prišiel na prednášku."
  • B = "študent prišiel na prednášku."

Tieto udalosti sú na sebe nezávislé a vzhľad jednej z nich neovplyvňuje vzhľad druhej. Nezlučiteľné udalosti sú definované skutočnosťou, že výskyt jedného vylučuje výskyt druhého. Ak hovoríme o tej istej minci, potom strata „chvostov“ znemožňuje výskyt „hláv“ v tom istom experimente.

Akcie na udalostiach

Udalosti je možné násobiť a pridávať, v disciplíne sú zavedené logické spojky „AND“ a „ALEBO“.

Množstvo je určené skutočnosťou, že buď udalosť A, alebo B, alebo obe môžu nastať súčasne. V prípade, že sú nekompatibilné, posledná možnosť nie je možná, buď A alebo B vypadne.

Násobenie udalostí spočíva v objavení sa A a B súčasne.

Teraz môžete uviesť niekoľko príkladov, aby ste si lepšie zapamätali základy, teóriu pravdepodobnosti a vzorce. Príklady riešenia problémov nižšie.

Cvičenie 1: Firma sa uchádza o zákazky na tri druhy prác. Možné udalosti, ktoré môžu nastať:

  • A = "firma dostane prvú zmluvu."
  • A 1 = "firma nedostane prvú zmluvu."
  • B = "firma dostane druhú zmluvu."
  • B 1 = „firma nedostane druhú zákazku“
  • C = "firma dostane tretiu zmluvu."
  • C 1 = "firma nedostane tretiu zmluvu."

Pokúsme sa vyjadriť nasledujúce situácie pomocou akcií na udalostiach:

  • K = "firma dostane všetky zmluvy."

V matematickej forme bude rovnica vyzerať takto: K = ABC.

  • M = "firma nedostane ani jednu zákazku."

M \u003d A 1 B 1 C 1.

Úlohu komplikujeme: H = "firma dostane jednu zákazku." Keďže nie je známe, akú zákazku firma dostane (prvú, druhú alebo tretiu), je potrebné zaznamenať celý rozsah možných udalostí:

H \u003d A 1 BC 1 υ AB 1 C 1 υ A 1 B 1 C.

A 1 BC 1 je séria udalostí, kde firma nedostane prvú a tretiu zmluvu, ale dostane druhú. Iné možné udalosti sa tiež zaznamenávajú zodpovedajúcou metódou. Symbol υ v disciplíne označuje zväzok „ALEBO“. Ak vyššie uvedený príklad preložíme do ľudskej reči, tak firma dostane buď tretiu zákazku, alebo druhú, alebo prvú. Podobne môžete napísať ďalšie podmienky v disciplíne „Teória pravdepodobnosti“. Vyššie uvedené vzorce a príklady riešenia problémov vám pomôžu urobiť to sami.

Vlastne pravdepodobnosť

Možno, že v tejto matematickej disciplíne je pravdepodobnosť udalosti ústredným pojmom. Existujú 3 definície pravdepodobnosti:

  • klasický;
  • štatistické;
  • geometrický.

Každý má svoje miesto v štúdiu pravdepodobností. Teória pravdepodobnosti, vzorce a príklady (9. ročník) väčšinou používajú klasickú definíciu, ktorá znie takto:

  • Pravdepodobnosť situácie A sa rovná pomeru počtu výsledkov, ktoré podporujú jej výskyt, k počtu všetkých možných výsledkov.

Vzorec vyzerá takto: P (A) \u003d m / n.

A vlastne aj udalosť. Ak sa vyskytne opak A, možno ho zapísať ako Ā alebo A 1 .

m je počet možných priaznivých prípadov.

n - všetky udalosti, ktoré sa môžu stať.

Napríklad A \u003d „vytiahnite kartu srdcovej farby“. V štandardnom balíčku je 36 kariet, z toho 9 sŕdc. V súlade s tým bude vzorec na riešenie problému vyzerať takto:

P(A) = 9/36 = 0,25.

V dôsledku toho bude pravdepodobnosť, že sa z balíčka vytiahne karta v tvare srdca, 0,25.

do vyššej matematiky

Teraz je už trochu známe, čo je to teória pravdepodobnosti, vzorce a príklady riešenia úloh, s ktorými sa stretávame v školských osnovách. Teóriu pravdepodobnosti však nájdeme aj vo vyššej matematike, ktorá sa vyučuje na univerzitách. Najčastejšie pracujú s geometrickými a štatistickými definíciami teórie a zložitými vzorcami.

Teória pravdepodobnosti je veľmi zaujímavá. Vzorce a príklady (vyššia matematika) je lepšie začať učiť od malého - od štatistickej (alebo frekvenčnej) definície pravdepodobnosti.

Štatistický prístup nie je v rozpore s klasickým prístupom, ale mierne ho rozširuje. Ak bolo v prvom prípade potrebné určiť, s akou mierou pravdepodobnosti nastane udalosť, potom je potrebné pri tejto metóde uviesť, ako často sa bude vyskytovať. Tu sa zavádza nový pojem „relatívnej frekvencie“, ktorý možno označiť ako W n (A). Vzorec sa nelíši od klasického:

Ak sa na prognózovanie počíta klasický vzorec, potom sa podľa výsledkov experimentu vypočítava štatistický. Vezmite si napríklad malú úlohu.

Oddelenie technologickej kontroly kontroluje kvalitu výrobkov. Spomedzi 100 produktov sa zistilo, že 3 sú nekvalitné. Ako zistiť frekvenčnú pravdepodobnosť kvalitného produktu?

A = "vzhľad kvalitného produktu."

Wn(A)=97/100=0,97

Frekvencia kvalitného produktu je teda 0,97. Odkiaľ máš 97? Zo 100 kontrolovaných produktov sa 3 ukázali ako nekvalitné. Odpočítame 3 od 100, dostaneme 97, to je množstvo kvalitného produktu.

Trochu o kombinatorike

Ďalšia metóda teórie pravdepodobnosti sa nazýva kombinatorika. Jeho základným princípom je, že ak určitá voľba A môže byť uskutočnená m rôznymi spôsobmi a voľba B n rôznymi spôsobmi, potom voľba A a B môže byť uskutočnená násobením.

Napríklad z mesta A do mesta B vedie 5 ciest. Z mesta B do mesta C vedú 4 trasy. Koľko spôsobov sa dá dostať z mesta A do mesta C?

Je to jednoduché: 5x4 = 20, to znamená, že existuje dvadsať rôznych spôsobov, ako sa dostať z bodu A do bodu C.

Urobme si úlohu ťažšou. Koľko spôsobov je možné hrať karty v solitaire? V balíčku 36 kariet je to východiskový bod. Ak chcete zistiť počet spôsobov, musíte „odčítať“ jednu kartu od počiatočného bodu a vynásobiť ju.

To znamená, že 36x35x34x33x32…x2x1= výsledok sa nezmestí na obrazovku kalkulačky, takže ho možno jednoducho označiť ako 36!. Podpíšte "!" vedľa čísla znamená, že celý rad čísel je medzi sebou vynásobený.

V kombinatorike existujú také pojmy ako permutácia, umiestnenie a kombinácia. Každý z nich má svoj vlastný vzorec.

Usporiadaná sada prvkov sady sa nazýva rozloženie. Umiestnenia sa môžu opakovať, čo znamená, že jeden prvok možno použiť viackrát. A to bez opakovania, keď sa prvky neopakujú. n sú všetky prvky, m sú prvky, ktoré sa podieľajú na umiestnení. Vzorec pre umiestnenie bez opakovaní bude vyzerať takto:

A n m = n!/(n-m)!

Spojenia n prvkov, ktoré sa líšia iba poradím umiestnenia, sa nazývajú permutácie. V matematike to vyzerá takto: P n = n!

Kombinácie n prvkov podľa m sú také zlúčeniny, pri ktorých je dôležité, ktoré prvky to boli a aký je ich celkový počet. Vzorec bude vyzerať takto:

A n m = n!/m! (n-m)!

Bernoulliho vzorec

V teórii pravdepodobnosti, ako aj v každej disciplíne, existujú práce vynikajúcich výskumníkov vo svojom odbore, ktorí ju posunuli na novú úroveň. Jednou z týchto prác je Bernoulliho vzorec, ktorý vám umožňuje určiť pravdepodobnosť výskytu určitej udalosti za nezávislých podmienok. To naznačuje, že výskyt A v experimente nezávisí od objavenia sa alebo nevyskytnutia sa rovnakej udalosti v predchádzajúcich alebo nasledujúcich testoch.

Bernoulliho rovnica:

Pn(m) = Cnm xpm xqn-m.

Pravdepodobnosť (p) výskytu udalosti (A) sa pri každom pokuse nemení. Pravdepodobnosť, že situácia nastane presne m-krát v n počte experimentov, sa vypočíta podľa vzorca, ktorý je uvedený vyššie. V súlade s tým vzniká otázka, ako zistiť číslo q.

Ak sa udalosť A vyskytne p toľkokrát, nemusí nastať. Jednotka je číslo, ktoré sa používa na označenie všetkých výsledkov situácie v disciplíne. Preto q je číslo, ktoré označuje možnosť, že udalosť nenastane.

Teraz poznáte Bernoulliho vzorec (teória pravdepodobnosti). Príklady riešenia problémov (prvá úroveň) budú uvedené nižšie.

Úloha 2: Návštevník predajne uskutoční nákup s pravdepodobnosťou 0,2. Do predajne samostatne vošlo 6 návštevníkov. Aká je pravdepodobnosť, že návštevník nakúpi?

Riešenie: Keďže nie je známe, koľko návštevníkov by malo uskutočniť nákup, jeden alebo všetci šiesti, je potrebné vypočítať všetky možné pravdepodobnosti pomocou Bernoulliho vzorca.

A = "návštevník uskutoční nákup."

V tomto prípade: p = 0,2 (ako je uvedené v úlohe). V súlade s tým q = 1-0,2 = 0,8.

n = 6 (pretože v predajni je 6 zákazníkov). Číslo m sa zmení z 0 (žiadny zákazník nenakúpi) na 6 (všetci návštevníci obchodu niečo kúpia). V dôsledku toho dostaneme riešenie:

P 6 (0) \u003d C 0 6 × p 0 × q 6 \u003d q 6 \u003d (0,8) 6 \u003d 0,2621.

Žiadny z kupujúcich neuskutoční nákup s pravdepodobnosťou 0,2621.

Ako inak sa používa Bernoulliho vzorec (teória pravdepodobnosti)? Príklady riešenia problémov (druhá úroveň) nižšie.

Po vyššie uvedenom príklade vyvstávajú otázky, kam sa podeli C a p. Vzhľadom na p sa číslo s mocninou 0 rovná jednej. Pokiaľ ide o C, možno ho nájsť podľa vzorca:

C n m = n! /m!(n-m)!

Keďže v prvom príklade m = 0, C=1, čo v zásade neovplyvňuje výsledok. Pomocou nového vzorca sa pokúsme zistiť, aká je pravdepodobnosť nákupu tovaru dvoma návštevníkmi.

P6 (2) = C6 2 ×p 2 ×q 4 = (6 × 5 × 4 × 3 × 2 × 1) / (2 × 1 × 4 × 3 × 2 × 1) × (0,2) 2 × ( 0,8) 4 = 15 × 0,04 × 0,4096 = 0,246.

Teória pravdepodobnosti nie je až taká zložitá. Bernoulliho vzorec, ktorého príklady sú uvedené vyššie, je toho priamym dôkazom.

Poissonov vzorec

Poissonova rovnica sa používa na výpočet nepravdepodobných náhodných situácií.

Základný vzorec:

Pn(m)=Am/m! x e (-λ).

V tomto prípade λ = n x p. Tu je taký jednoduchý Poissonov vzorec (teória pravdepodobnosti). Príklady riešenia problémov budú uvedené nižšie.

Úloha 3 Odpoveď: Továreň vyrobila 100 000 dielov. Vzhľad chybnej časti = 0,0001. Aká je pravdepodobnosť, že v dávke bude 5 chybných dielov?

Ako vidíte, manželstvo je nepravdepodobná udalosť, a preto sa na výpočet používa Poissonov vzorec (teória pravdepodobnosti). Príklady riešenia problémov tohto druhu sa nelíšia od iných úloh disciplíny, potrebné údaje dosadíme do vyššie uvedeného vzorca:

A = "náhodne vybraný diel bude chybný."

p = 0,0001 (podľa podmienky priradenia).

n = 100 000 (počet častí).

m = 5 (chybné časti). Nahradíme údaje vo vzorci a dostaneme:

R 100 000 (5) = 10 5 / 5! Xe-io = 0,0375.

Rovnako ako Bernoulliho vzorec (teória pravdepodobnosti), príklady riešení, ktoré sú napísané vyššie, má Poissonova rovnica neznáme e. V podstate ju možno nájsť podľa vzorca:

e-λ = lim n ->∞ (1-λ/n) n.

Existujú však špeciálne tabuľky, ktoré obsahujú takmer všetky hodnoty napr.

De Moivre-Laplaceova veta

Ak je počet pokusov v Bernoulliho schéme dostatočne veľký a pravdepodobnosť výskytu udalosti A vo všetkých schémach rovnaká, potom pravdepodobnosť výskytu udalosti A môže byť určitý počet opakovaní v sérii pokusov. nájdené podľa Laplaceovho vzorca:

Р n (m) = 1/√npq x ϕ (X m).

Xm = m-np/√npq.

Pre lepšie zapamätanie si Laplaceovho vzorca (teória pravdepodobnosti), príklady úloh, ktoré vám pomôžu nižšie.

Najprv nájdeme X m , dosadíme údaje (všetky sú uvedené vyššie) do vzorca a dostaneme 0,025. Pomocou tabuliek nájdeme číslo ϕ (0,025), ktorého hodnota je 0,3988. Teraz môžete nahradiť všetky údaje vo vzorci:

P 800 (267) \u003d 1/√ (800 x 1/3 x 2/3) x 0,3988 \u003d 3/40 x 0,3988 \u003d 0,03.

Pravdepodobnosť, že letáčik zasiahne presne 267-krát, je teda 0,03.

Bayesov vzorec

Bayesov vzorec (teória pravdepodobnosti), príklady riešenia úloh, pomocou ktorých budú uvedené nižšie, je rovnica, ktorá popisuje pravdepodobnosť udalosti na základe okolností, ktoré by s ňou mohli byť spojené. Hlavný vzorec je nasledujúci:

P (A|B) = P (B|A) x P (A) / P (B).

A a B sú určité udalosti.

P(A|B) - podmienená pravdepodobnosť, to znamená, že udalosť A môže nastať za predpokladu, že udalosť B je pravdivá.

Р (В|А) - podmienená pravdepodobnosť udalosti В.

Takže záverečnou časťou krátkeho kurzu "Teória pravdepodobnosti" je Bayesov vzorec, príklady riešenia problémov sú uvedené nižšie.

Úloha 5: Do skladu boli privezené telefóny od troch firiem. Zároveň je časť telefónov, ktoré sa vyrábajú v prvom závode, 25%, v druhom - 60%, v treťom - 15%. Je tiež známe, že priemerné percento chybných výrobkov v prvom závode je 2%, v druhom - 4% a v treťom - 1%. Je potrebné nájsť pravdepodobnosť, že náhodne vybraný telefón bude chybný.

A = "náhodne prevzatý telefón."

B 1 - telefón, ktorý vyrobila prvá továreň. Podľa toho sa objavia úvodné B 2 a B 3 (pre druhú a tretiu továreň).

V dôsledku toho dostaneme:

P (B 1) \u003d 25 % / 100 % \u003d 0,25; P (B2) \u003d 0,6; P (B 3) \u003d 0,15 - takže sme našli pravdepodobnosť každej možnosti.

Teraz musíte nájsť podmienené pravdepodobnosti požadovanej udalosti, to znamená pravdepodobnosť chybných produktov vo firmách:

P (A / B 1) \u003d 2 % / 100 % \u003d 0,02;

P (A / B 2) \u003d 0,04;

P (A / B 3) \u003d 0,01.

Teraz dosadíme údaje do Bayesovho vzorca a získame:

P (A) \u003d 0,25 x 0,2 + 0,6 x 0,4 + 0,15 x 0,01 \u003d 0,0305.

Článok predstavuje teóriu pravdepodobnosti, vzorce a príklady riešenia problémov, ale toto je len špička ľadovca obrovskej disciplíny. A po tom všetkom, čo bolo napísané, bude logické položiť si otázku, či je v živote potrebná teória pravdepodobnosti. Pre jednoduchého človeka je ťažké odpovedať, je lepšie sa opýtať niekoho, kto s jej pomocou strelil jackpot viac ako raz.

V ekonomike, ale aj v iných oblastiach ľudskej činnosti či v prírode sa neustále musíme potýkať s udalosťami, ktoré sa nedajú presne predpovedať. Objem predaja tovaru teda závisí od dopytu, ktorý sa môže výrazne líšiť, a od množstva ďalších faktorov, ktoré je takmer nemožné zohľadniť. Preto pri organizácii výroby a predaja treba predpovedať výsledok takýchto činností buď na základe vlastnej predchádzajúcej skúsenosti, alebo podobnej skúsenosti iných ľudí, prípadne intuície, ktorá je tiež z veľkej časti založená na experimentálnych údajoch.

Aby bolo možné nejako zhodnotiť posudzovanú udalosť, je potrebné vziať do úvahy alebo špeciálne zorganizovať podmienky, v ktorých sa táto udalosť zaznamenáva.

Nazýva sa implementácia určitých podmienok alebo akcií na identifikáciu predmetnej udalosti skúsenosti alebo experimentovať.

Podujatie sa volá náhodný ak v dôsledku experimentu môže alebo nemusí nastať.

Podujatie sa volá spoľahlivý, ak sa nevyhnutne objaví v dôsledku tejto skúsenosti, a nemožné ak sa nemôže objaviť v tomto zážitku.

Napríklad sneženie v Moskve 30. novembra je náhodná udalosť. Každodenný východ slnka možno považovať za určitú udalosť. Sneženie na rovníku možno považovať za nemožnú udalosť.

Jedným z hlavných problémov v teórii pravdepodobnosti je problém stanovenia kvantitatívnej miery možnosti výskytu udalosti.

Algebra udalostí

Udalosti sa nazývajú nezlučiteľné, ak ich nemožno pozorovať spolu v rovnakom zážitku. Prítomnosť dvoch a troch áut v jednej predajni na predaj v rovnakom čase sú teda dve nezlučiteľné udalosti.

súčet udalosťou je udalosť, ktorá spočíva v výskyte aspoň jednej z týchto udalostí

Príkladom súčtu udalostí je prítomnosť aspoň jedného z dvoch produktov v obchode.

práca udalosti sa nazýva udalosť spočívajúca v súčasnom výskyte všetkých týchto udalostí

Udalosť spočívajúca v objavení sa dvoch tovarov súčasne v predajni je produktom udalostí: - vzhľad jedného produktu, - vzhľad iného produktu.

Udalosti tvoria ucelenú skupinu udalostí, ak sa aspoň jedna z nich nevyhnutne vyskytne v zážitku.

Príklad. Prístav má dve kotviská pre lode. Možno zvážiť tri udalosti: - neprítomnosť plavidiel v kotviskách, - prítomnosť jedného plavidla na jednom z kotvísk, - prítomnosť dvoch plavidiel na dvoch kotviskách. Tieto tri udalosti tvoria ucelenú skupinu udalostí.

Naproti nazývajú sa dve jedinečné možné udalosti, ktoré tvoria kompletnú skupinu.

Ak je jedna z opačných udalostí označená ako , potom opačná udalosť je zvyčajne označená ako .

Klasické a štatistické definície pravdepodobnosti udalosti

Každý z rovnako možných výsledkov testu (experimentov) sa nazýva elementárny výsledok. Zvyčajne sa označujú písmenami. Napríklad sa hádže kockou. Podľa počtu bodov na stranách môže byť šesť základných výsledkov.

Z elementárnych výsledkov môžete poskladať komplexnejšiu udalosť. Udalosť s párnym počtom bodov je teda určená tromi výsledkami: 2, 4, 6.

Kvantitatívnym meradlom možnosti výskytu uvažovanej udalosti je pravdepodobnosť.

Najčastejšie sa používajú dve definície pravdepodobnosti udalosti: klasický a štatistické.

Klasická definícia pravdepodobnosti súvisí s pojmom priaznivý výsledok.

Exodus sa nazýva priaznivý túto udalosť, ak jej výskyt znamená výskyt tejto udalosti.

V danom príklade je uvažovaná udalosť párnym počtom bodov na poklesnutej hrane a má tri priaznivé výsledky. V tomto prípade generál
počet možných výsledkov. Takže tu môžete použiť klasickú definíciu pravdepodobnosti udalosti.

Klasická definícia sa rovná pomeru počtu priaznivých výsledkov k celkovému počtu možných výsledkov

kde je pravdepodobnosť udalosti , je počet priaznivých výsledkov pre udalosť, je celkový počet možných výsledkov.

V uvažovanom príklade

Štatistická definícia pravdepodobnosti je spojená s pojmom relatívnej frekvencie výskytu udalosti v experimentoch.

Relatívna frekvencia výskytu udalosti sa vypočíta podľa vzorca

kde je počet výskytov udalosti v sérii experimentov (testov).

Štatistická definícia. Pravdepodobnosť udalosti je číslo, voči ktorému je relatívna frekvencia stabilizovaná (stanovená) s neobmedzeným nárastom počtu experimentov.

V praktických problémoch sa relatívna frekvencia pre dostatočne veľký počet pokusov berie ako pravdepodobnosť udalosti.

Z týchto definícií pravdepodobnosti udalosti je vidieť, že nerovnosť vždy platí

Na určenie pravdepodobnosti udalosti na základe vzorca (1.1) sa často používajú kombinatorikové vzorce na zistenie počtu priaznivých výsledkov a celkového počtu možných výsledkov.

Poďme sa teda porozprávať o téme, ktorá zaujíma veľa ľudí. V tomto článku odpoviem na otázku, ako vypočítať pravdepodobnosť udalosti. Uvediem vzorce na takýto výpočet a niekoľko príkladov, aby bolo jasnejšie, ako sa to robí.

Čo je pravdepodobnosť

Začnime tým, že pravdepodobnosť, že dôjde k tej či onej udalosti, je istá miera dôvery v konečný výskyt nejakého výsledku. Pre tento výpočet bol vyvinutý vzorec celkovej pravdepodobnosti, ktorý vám umožňuje určiť, či nastane alebo nenastane udalosť, ktorá vás zaujíma, prostredníctvom takzvaných podmienených pravdepodobností. Tento vzorec vyzerá takto: P \u003d n / m, písmená sa môžu meniť, ale to neovplyvňuje samotnú podstatu.

Príklady pravdepodobnosti

Na najjednoduchšom príklade analyzujeme tento vzorec a použijeme ho. Povedzme, že máte nejakú udalosť (P), nech je to hod kockou, teda rovnostranná kocka. A musíme vypočítať, aká je pravdepodobnosť získania 2 bodov. To si vyžaduje počet kladných udalostí (n), v našom prípade - stratu 2 bodov na celkový počet udalostí (m). Strata 2 bodov môže byť iba v jednom prípade, ak sú na kocke 2 body, pretože v opačnom prípade bude suma väčšia, z toho vyplýva, že n = 1. Ďalej vypočítame počet akýchkoľvek ďalších čísel padnutých na kocku. kocky, na 1 kocku - to sú 1, 2, 3, 4, 5 a 6, preto existuje 6 priaznivých prípadov, to znamená m \u003d 6. Teraz podľa vzorca urobíme jednoduchý výpočet P \ u003d 1/6 a dostaneme, že strata 2 bodov na kocke je 1/6, čiže pravdepodobnosť udalosti je veľmi malá.

Zoberme si tiež príklad na farebných loptičkách, ktoré sú v krabici: 50 bielych, 40 čiernych a 30 zelených. Musíte určiť, aká je pravdepodobnosť nakreslenia zelenej gule. A tak, keďže je 30 loptičiek tejto farby, to znamená, že môže byť len 30 pozitívnych udalostí (n = 30), počet všetkých udalostí je 120, m = 120 (podľa celkového počtu všetkých loptičiek), podľa vzorca vypočítame, že pravdepodobnosť vytiahnutia zelenej gule sa bude rovnať P = 30/120 = 0,25, teda 25 % zo 100. Rovnakým spôsobom môžete vypočítať pravdepodobnosť vytiahnutia loptička inej farby (bude čierna 33%, biela 42%).

Ako vypočítať pravdepodobnosť udalosti?

Chápem, že každý chce vopred vedieť, ako sa športové podujatie skončí, kto vyhrá a kto prehrá. S týmito informáciami môžete bez obáv tipovať športové udalosti. Je to však vôbec možné a ak áno, ako vypočítať pravdepodobnosť udalosti?

Pravdepodobnosť je relatívna hodnota, preto nemôže s presnosťou hovoriť o žiadnej udalosti. Táto hodnota vám umožňuje analyzovať a vyhodnotiť potrebu staviť na konkrétnu súťaž. Definícia pravdepodobností je celá veda, ktorá si vyžaduje starostlivé štúdium a pochopenie.

Koeficient pravdepodobnosti v teórii pravdepodobnosti

V športových stávkach existuje niekoľko možností pre výsledok súťaže:

  • víťazstvo prvého tímu;
  • víťazstvo druhého tímu;
  • kresliť;
  • Celkom

Každý výsledok súťaže má svoju vlastnú pravdepodobnosť a frekvenciu, s akou k tejto udalosti dôjde, za predpokladu, že sa zachovajú počiatočné charakteristiky. Ako už bolo spomenuté, nie je možné presne vypočítať pravdepodobnosť akejkoľvek udalosti - môže, ale nemusí sa zhodovať. Vaša stávka teda môže vyhrať alebo prehrať.

Nie je možné presne 100% predpovedať výsledky súťaže, pretože výsledok zápasu ovplyvňuje veľa faktorov. Stávkové kancelárie prirodzene nepoznajú výsledok zápasu vopred a len predpokladajú výsledok, rozhodujú o svojom systéme analýzy a ponúkajú určité kurzy na stávky.

Ako vypočítať pravdepodobnosť udalosti?

Povedzme, že kurz stávkovej kancelárie je 2,1/2 – dostaneme 50 %. Ukazuje sa, že koeficient 2 sa rovná pravdepodobnosti 50 %. Rovnakým princípom môžete získať pomer pravdepodobnosti zvratu - 1 / pravdepodobnosť.

Mnoho hráčov si myslí, že po niekoľkých opakovaných prehrách určite príde k výhre - to je mylný názor. Pravdepodobnosť výhry stávky nezávisí od počtu prehier. Aj keď v hre o mince hodíte niekoľko hláv za sebou, pravdepodobnosť hádzania chvostov zostáva rovnaká – 50 %.

Pri hode mincou sa dá povedať, že pristane heads up, príp pravdepodobnosť z toho je 1/2. To samozrejme neznamená, že ak je minca hodená 10-krát, nevyhnutne 5-krát pristane na hlave. Ak je minca „spravodlivá“ a ak je hodená mnohokrát, hlavy sa polovicu času priblížia veľmi blízko. Existujú teda dva druhy pravdepodobnosti: experimentálne a teoretická .

Experimentálna a teoretická pravdepodobnosť

Ak hodíme mincou veľký počet krát - povedzme 1000 - a spočítame, koľkokrát padne hlavou, môžeme určiť pravdepodobnosť, že padne hlavou. Ak sa hlavy zdvihnú 503-krát, môžeme vypočítať pravdepodobnosť, že sa objavia:
503/1000 alebo 0,503.

to experimentálne definícia pravdepodobnosti. Táto definícia pravdepodobnosti vychádza z pozorovania a štúdia údajov a je celkom bežná a veľmi užitočná. Tu sú napríklad niektoré pravdepodobnosti, ktoré boli určené experimentálne:

1. Šanca, že žena dostane rakovinu prsníka, je 1/11.

2. Ak sa bozkávate s prechladnutým, tak pravdepodobnosť, že prechladnete aj vy, je 0,07.

3. Osoba, ktorá bola práve prepustená z väzenia, má 80% šancu vrátiť sa späť do väzenia.

Ak vezmeme do úvahy hod mincou a berieme do úvahy, že je rovnako pravdepodobné, že sa vrhne hore nohami, môžeme vypočítať pravdepodobnosť, že sa vrhnú hore nohami: 1/2. Toto je teoretická definícia pravdepodobnosti. Tu sú niektoré ďalšie pravdepodobnosti, ktoré boli teoreticky určené pomocou matematiky:

1. Ak je v miestnosti 30 ľudí, pravdepodobnosť, že dvaja z nich majú rovnaké narodeniny (okrem roku), je 0,706.

2. Počas cesty sa s niekým zoznámite a v priebehu rozhovoru zistíte, že máte spoločného známeho. Typická reakcia: "To nemôže byť!" V skutočnosti táto fráza nesedí, pretože pravdepodobnosť takejto udalosti je pomerne vysoká - niečo cez 22%.

Preto sa experimentálna pravdepodobnosť určuje pozorovaním a zberom údajov. Teoretické pravdepodobnosti sú určené matematickým uvažovaním. Príklady experimentálnych a teoretických pravdepodobností, ako sú uvedené vyššie, a najmä tie, ktoré neočakávame, nás vedú k dôležitosti štúdia pravdepodobnosti. Môžete sa opýtať: "Aká je skutočná pravdepodobnosť?" V skutočnosti žiadna neexistuje. Experimentálne je možné určiť pravdepodobnosti v určitých medziach. Môžu a nemusia sa zhodovať s pravdepodobnosťami, ktoré získame teoreticky. Existujú situácie, v ktorých je oveľa jednoduchšie definovať jeden typ pravdepodobnosti ako iný. Napríklad by stačilo nájsť pravdepodobnosť prechladnutia pomocou teoretickej pravdepodobnosti.

Výpočet experimentálnych pravdepodobností

Najprv zvážte experimentálnu definíciu pravdepodobnosti. Základný princíp, ktorý používame na výpočet takýchto pravdepodobností, je nasledujúci.

Princíp P (experimentálne)

Ak sa v experimente, v ktorom sa uskutoční n pozorovaní, situácia alebo udalosť E vyskytne m-krát v n pozorovaniach, potom sa hovorí, že experimentálna pravdepodobnosť udalosti je P (E) = m/n.

Príklad 1 Sociologický prieskum. Bola vykonaná experimentálna štúdia na zistenie počtu ľavákov, pravákov a ľudí, u ktorých sú obe ruky rovnako vyvinuté.Výsledky sú uvedené v grafe.

a) Určte pravdepodobnosť, že osoba je pravák.

b) Určte pravdepodobnosť, že osoba je ľavák.

c) Určte pravdepodobnosť, že osoba ovláda obe ruky rovnako.

d) Väčšina turnajov PBA má 120 hráčov. Na základe tohto experimentu, koľko hráčov môže byť ľavákov?

Riešenie

a) Počet ľudí, ktorí sú praváci je 82, počet ľavákov je 17 a počet tých, ktorí ovládajú obe ruky rovnako plynule, je 1. Celkový počet pozorovaní je 100. Pravdepodobnosť že človek je pravák je P
P = 82/100 alebo 0,82 alebo 82 %.

b) Pravdepodobnosť, že je človek ľavák, je P, kde
P = 17/100 alebo 0,17 alebo 17 %.

c) Pravdepodobnosť, že človek ovláda obe ruky rovnako plynulo je P, kde
P = 1/100 alebo 0,01 alebo 1 %.

d) 120 nadhadzovačov a od (b) môžeme očakávať, že 17 % bude ľavákov. Odtiaľ
17 % zo 120 = 0,17,120 = 20,4,
to znamená, že môžeme očakávať približne 20 hráčov, ktorí budú ľaváci.

Príklad 2 Kontrola kvality . Pre výrobcu je veľmi dôležité udržiavať kvalitu svojich výrobkov na vysokej úrovni. V skutočnosti spoločnosti najímajú inšpektorov kontroly kvality, aby zabezpečili tento proces. Cieľom je uvoľniť minimálny možný počet chybných produktov. Ale keďže spoločnosť vyrába každý deň tisíce položiek, nemôže si dovoliť kontrolovať každú položku, aby zistila, či je chybná alebo nie. Aby spoločnosť zistila, aké percento produktov je chybných, testuje oveľa menej produktov.
USDA vyžaduje, aby 80 % semien, ktoré pestovatelia predávajú, vyklíčilo. Na zistenie kvality semien, ktoré poľnohospodárska spoločnosť vyrába, sa vysadí 500 semien z vyprodukovaných semien. Potom sa vypočítalo, že vyklíčilo 417 semien.

a) Aká je pravdepodobnosť, že semienko vyklíči?

b) Spĺňajú semená vládne normy?

Riešenie a) Vieme, že z 500 zasadených semien 417 vyklíčilo. Pravdepodobnosť klíčenia semien P, a
P = 417/500 = 0,834 alebo 83,4 %.

b) Keďže percento vyklíčených semien na požiadanie prekročilo 80 %, semená spĺňajú štátne normy.

Príklad 3 TV hodnotenie. Podľa štatistík je v USA 105 500 000 televíznych domácností. Každý týždeň sa zbierajú a spracúvajú informácie o sledovanosti programov. Počas jedného týždňa si 7 815 000 domácností naladilo komediálny seriál CBS Everybody Loves Raymond a 8 302 000 domácností si naladilo hit NBC Law & Order (Zdroj: Nielsen Media Research). Aká je pravdepodobnosť, že jeden domáci televízor je počas daného týždňa naladený na „Everybody Loves Raymond“? na „Law & Order“?

Riešenie Pravdepodobnosť, že televízor v jednej domácnosti je nastavený na „Každý miluje Raymonda“ je P a
P = 7 815 000/105 500 000 ≈ 0,074 ≈ 7,4 %.
Možnosť, že televízor pre domácnosť bol nastavený na „Zákon a poriadok“ je P a
P = 8 302 000/105 500 000 ≈ 0,079 ≈ 7,9 %.
Tieto percentá sa nazývajú hodnotenia.

teoretická pravdepodobnosť

Predpokladajme, že robíme experiment, ako je hádzanie mince alebo šípky, ťahanie karty z balíčka alebo testovanie predmetov na montážnej linke. Každý možný výsledok takéhoto experimentu sa nazýva Exodus . Množina všetkých možných výsledkov je tzv výsledný priestor . Udalosť je to súbor výsledkov, teda podmnožina priestoru výsledkov.

Príklad 4 Hádzanie šípok. Predpokladajme, že pri experimente „hádzanie šípok“ šípka zasiahne cieľ. Nájdite každú z nasledujúcich možností:

b) Priestor pre výsledky

Riešenie
a) Výsledky sú: trafiť čiernu (H), trafiť červenú (K) a biť bielu (B).

b) Existuje medzera výsledku (trafa čierna, červená, biela), ktorú možno jednoducho napísať ako (B, R, B).

Príklad 5 Hádzanie kockou. Kocka je kocka so šiestimi stranami, z ktorých každá má jednu až šesť bodiek.


Predpokladajme, že hádžeme kockou. Nájsť
a) Výsledky
b) Priestor pre výsledky

Riešenie
a) Výsledky: 1, 2, 3, 4, 5, 6.
b) Priestor výsledkov (1, 2, 3, 4, 5, 6).

Pravdepodobnosť, že udalosť E nastane, označíme ako P(E). Napríklad „minca pristane na chvostoch“ môže byť označená H. Potom P(H) je pravdepodobnosť, že minca dopadne na chvosty. Keď majú všetky výsledky experimentu rovnakú pravdepodobnosť výskytu, hovorí sa, že sú rovnako pravdepodobné. Ak chcete vidieť rozdiel medzi udalosťami, ktoré sú rovnako pravdepodobné, a udalosťami, ktoré nie sú rovnako pravdepodobné, zvážte cieľ uvedený nižšie.

Pre cieľ A sú udalosti zásahu čiernej, červenej a bielej rovnako pravdepodobné, pretože čierne, červené a biele sektory sú rovnaké. Pre cieľ B však zóny s týmito farbami nie sú rovnaké, to znamená, že ich zasiahnutie nie je rovnako pravdepodobné.

Princíp P (teoretický)

Ak udalosť E môže nastať v m cestách z n možných ekvipravdepodobných výsledkov z výsledného priestoru S, potom teoretická pravdepodobnosť udalosť, P(E) je
P(E) = m/n.

Príklad 6 Aká je pravdepodobnosť hodu 3 hodom kockou?

Riešenie Na kocke je 6 rovnako pravdepodobných výsledkov a je len jedna možnosť hodiť číslo 3. Potom bude pravdepodobnosť P P(3) = 1/6.

Príklad 7 Aká je pravdepodobnosť hodu párnym číslom na kocke?

Riešenie Udalosťou je hádzanie párneho čísla. To sa môže stať 3 spôsobmi (ak hodíte 2, 4 alebo 6). Počet ekvipravdepodobných výsledkov je 6. Potom pravdepodobnosť P(párne) = 3/6 alebo 1/2.

Použijeme niekoľko príkladov súvisiacich so štandardným balíčkom 52 kariet. Takýto balíček pozostáva z kariet znázornených na obrázku nižšie.

Príklad 8 Aká je pravdepodobnosť vytiahnutia esa z dobre zamiešaného balíčka kariet?

Riešenie Existuje 52 výsledkov (počet kariet v balíčku), sú rovnako pravdepodobné (ak je balíček dobre premiešaný) a existujú 4 spôsoby ťahania esa, takže podľa princípu P je pravdepodobnosť
P(ťahanie esa) = 4/52 alebo 1/13.

Príklad 9 Predpokladajme, že si vyberieme bez toho, aby sme hľadali jednu guľôčku z vrecka 3 červených guľôčok a 4 zelených guľôčok. Aká je pravdepodobnosť výberu červenej gule?

Riešenie Existuje 7 rovnako pravdepodobných výsledkov na získanie akejkoľvek loptičky, a keďže počet spôsobov, ako vytiahnuť červenú guľu, je 3, dostaneme
P(výber červenej gule) = 3/7.

Nasledujúce tvrdenia sú výsledkom princípu P.

Pravdepodobnostné vlastnosti

a) Ak udalosť E nemôže nastať, potom P(E) = 0.
b) Ak udalosť E nevyhnutne nastane, potom P(E) = 1.
c) Pravdepodobnosť, že nastane udalosť E, je číslo medzi 0 a 1: 0 ≤ P(E) ≤ 1.

Napríklad pri hode mincou je pravdepodobnosť, že minca dopadne na jej okraj, nulová. Pravdepodobnosť, že minca je hlava alebo chvost, má pravdepodobnosť 1.

Príklad 10 Predpokladajme, že z balíčka s 52 kartami sú vytiahnuté 2 karty. Aká je pravdepodobnosť, že obaja sú piky?

Riešenie Počet spôsobov n ťahania 2 kariet z dobre zamiešaného 52-kartového balíčka je 52 C 2 . Keďže 13 z 52 kariet sú piky, počet m spôsobov ťahania 2 pikových kariet je 13 C 2 . potom
P(natiahnutie 2 vrcholov) \u003d m / n \u003d 13 C 2 / 52 C 2 \u003d 78/1326 \u003d 1/17.

Príklad 11 Predpokladajme, že zo skupiny 6 mužov a 4 žien sú náhodne vybraní 3 ľudia. Aká je pravdepodobnosť, že bude vybraný 1 muž a 2 ženy?

Riešenie Počet spôsobov výberu troch osôb zo skupiny 10 osôb 10 C 3 . Jeden muž môže byť vybraný 6 spôsobmi C 1 a 2 ženy môžu byť vybrané 4 spôsobmi C 2. Podľa základného princípu počítania je počet spôsobov výberu 1. muža a 2 žien 6 C 1 . 4C2. Potom je pravdepodobnosť, že bude vybraný 1 muž a 2 ženy
P = 6 C1. 4 C 2 / 10 C 3 \u003d 3/10.

Príklad 12 Hádzanie kockou. Aká je pravdepodobnosť, že na dvoch kockách hodíte celkovo 8?

Riešenie Na každej kocke je 6 možných výsledkov. Výsledky sa zdvojnásobia, to znamená, že existuje 6,6 alebo 36 možných spôsobov, ako môžu padnúť čísla na dvoch kockách. (Je lepšie, ak sú kocky odlišné, povedzme, že jedna je červená a druhá modrá - pomôže to vizualizovať výsledok.)

Dvojice čísel, ktorých súčet je 8, sú znázornené na obrázku nižšie. Existuje 5 možných spôsobov, ako získať súčet rovný 8, teda pravdepodobnosť je 5/36.

Voľba editora
Je ťažké nájsť nejakú časť kurčaťa, z ktorej by sa nedala pripraviť slepačia polievka. Polievka z kuracích pŕs, kuracia polievka...

Ak chcete pripraviť plnené zelené paradajky na zimu, musíte si vziať cibuľu, mrkvu a korenie. Možnosti prípravy zeleninových marinád...

Paradajky a cesnak sú najchutnejšou kombináciou. Na túto konzerváciu musíte vziať malé husté červené slivkové paradajky ...

Grissini sú chrumkavé tyčinky z Talianska. Pečú sa prevažne z kváskového základu, posypané semienkami alebo soľou. Elegantný...
Káva Raf je horúca zmes espressa, smotany a vanilkového cukru, vyšľahaná pomocou výstupu pary z espresso kávovaru v džbáne. Jeho hlavnou črtou...
Studené občerstvenie na slávnostnom stole zohráva kľúčovú úlohu. Koniec koncov, umožňujú hosťom nielen ľahké občerstvenie, ale aj krásne...
Snívate o tom, že sa naučíte variť chutne a zapôsobíte na hostí a domáce gurmánske jedlá? Na tento účel nie je vôbec potrebné vykonávať ...
Dobrý deň, priatelia! Predmetom našej dnešnej analýzy je vegetariánska majonéza. Mnoho známych kulinárskych špecialistov verí, že omáčka ...
Jablkový koláč je pečivo, ktoré sa každé dievča naučilo variť na technologických hodinách. Je to koláč s jablkami, ktorý bude vždy veľmi ...