วิธีค้นหาตัวคูณร่วมน้อยของ 3 จำนวน การหาพหุคูณร่วมน้อยที่สุด วิธี ตัวอย่างการหา LCM


ตัวหารร่วมมากและตัวคูณร่วมน้อยเป็นแนวคิดหลักทางคณิตศาสตร์ที่ทำให้การทำงานกับเศษส่วนเป็นเรื่องง่าย LCM และมักใช้เพื่อค้นหาตัวส่วนร่วมของเศษส่วนหลายตัว

แนวคิดพื้นฐาน

ตัวหารของจำนวนเต็ม X คือจำนวนเต็ม Y อีกตัวหนึ่ง โดยที่ X จะถูกหารโดยไม่เหลือเศษ ตัวอย่างเช่น ตัวหารของ 4 คือ 2 และ 36 คือ 4, 6, 9 ผลคูณของจำนวนเต็ม X คือตัวเลข Y ที่หารด้วย X ลงตัวโดยไม่มีเศษ ตัวอย่างเช่น 3 เป็นผลคูณของ 15 และ 6 เป็นผลคูณของ 12

สำหรับคู่ตัวเลขใดๆ เราสามารถหาตัวหารร่วมและตัวคูณได้ ตัวอย่างเช่น สำหรับ 6 และ 9 ตัวคูณร่วมคือ 18 และตัวหารร่วมคือ 3 แน่นอนว่าคู่สามารถมีตัวหารและตัวคูณได้หลายตัว ดังนั้นการคำนวณจึงใช้ GCD ตัวหารที่ใหญ่ที่สุดและ LCM ตัวคูณที่เล็กที่สุด

ตัวหารที่น้อยที่สุดนั้นไม่มีความหมาย เนื่องจากสำหรับจำนวนใดๆ ก็ตามจะเป็นหนึ่งเสมอ ผลคูณที่ยิ่งใหญ่ที่สุดก็ไม่มีความหมายเช่นกัน เนื่องจากลำดับของผลคูณไปจนถึงค่าอนันต์

กำลังค้นหา gcd

มีหลายวิธีในการค้นหาตัวหารร่วมมาก วิธีที่มีชื่อเสียงที่สุดคือ:

  • การค้นหาตัวหารตามลำดับ การเลือกตัวร่วมสำหรับคู่ และค้นหาตัวที่ใหญ่ที่สุด
  • การสลายตัวของตัวเลขเป็นปัจจัยที่แบ่งแยกไม่ได้
  • อัลกอริธึมแบบยุคลิด;
  • อัลกอริธึมไบนารี

ปัจจุบันในสถาบันการศึกษา วิธีที่ได้รับความนิยมมากที่สุดคือการแบ่งแยกออกเป็นปัจจัยเฉพาะและอัลกอริธึมแบบยุคลิด ในทางกลับกันจะใช้เมื่อแก้สมการไดโอแฟนไทน์: จำเป็นต้องค้นหา GCD เพื่อตรวจสอบสมการเพื่อหาความเป็นไปได้ในการแก้ไขเป็นจำนวนเต็ม

การค้นหา NOC

ตัวคูณร่วมน้อยยังถูกกำหนดโดยการค้นหาตามลำดับหรือการแยกย่อยออกเป็นปัจจัยที่แบ่งแยกไม่ได้ นอกจากนี้ยังง่ายต่อการค้นหา LCM หากมีตัวหารที่ยิ่งใหญ่ที่สุดถูกกำหนดไว้แล้ว สำหรับตัวเลข X และ Y นั้น LCM และ GCD มีความสัมพันธ์กันโดยความสัมพันธ์ต่อไปนี้:

จอแอลซีดี(X,Y) = X × Y / GCD(X,Y)

ตัวอย่างเช่น ถ้า GCM(15,18) = 3 แล้ว LCM(15,18) = 15 × 18 / 3 = 90 ตัวอย่างที่ชัดเจนที่สุดของการใช้ LCM คือการหาตัวส่วนร่วมซึ่งเป็นตัวคูณร่วมน้อยของ เศษส่วนที่กำหนด

ตัวเลขโคไพรม์

ถ้าคู่ของตัวเลขไม่มีตัวหารร่วม คู่ดังกล่าวจะเรียกว่าโคไพรม์ gcd สำหรับคู่ดังกล่าวจะเท่ากับ 1 เสมอ และขึ้นอยู่กับความสัมพันธ์ระหว่างตัวหารและตัวคูณ gcd สำหรับคู่โคไพรม์จะเท่ากับผลคูณของตัวหาร ตัวอย่างเช่น จำนวน 25 และ 28 ค่อนข้างเป็นจำนวนเฉพาะ เนื่องจากไม่มีตัวหารร่วม และ LCM(25, 28) = 700 ซึ่งสอดคล้องกับผลคูณของจำนวนนั้น จำนวนที่แบ่งแยกไม่ได้สองตัวใดๆ จะเป็นจำนวนเฉพาะเสมอ

ตัวหารร่วมและเครื่องคิดเลขหลายตัว

การใช้เครื่องคิดเลขของเราทำให้คุณสามารถคำนวณ GCD และ LCM เพื่อเลือกตัวเลขได้ตามใจชอบ งานในการคำนวณตัวหารร่วมและตัวคูณพบได้ในวิชาเลขคณิตชั้นประถมศึกษาปีที่ 5 และ 6 แต่ GCD และ LCM เป็นแนวคิดหลักในคณิตศาสตร์ และใช้ในทฤษฎีจำนวน ระนาบ และพีชคณิตเชิงการสื่อสาร

ตัวอย่างชีวิตจริง

ตัวส่วนร่วมของเศษส่วน

ตัวคูณร่วมน้อยใช้ในการค้นหาตัวส่วนร่วมของเศษส่วนหลายตัว สมมติว่าในโจทย์เลขคณิตคุณต้องรวมเศษส่วน 5 ตัว:

1/8 + 1/9 + 1/12 + 1/15 + 1/18.

ในการบวกเศษส่วน นิพจน์ต้องถูกลดให้เป็นตัวส่วนร่วม ซึ่งจะช่วยลดปัญหาในการหา LCM เมื่อต้องการทำเช่นนี้ ให้เลือกตัวเลข 5 ตัวในเครื่องคิดเลขและป้อนค่าของตัวส่วนในเซลล์ที่เกี่ยวข้อง โปรแกรมจะคำนวณ LCM (8, 9, 12, 15, 18) = 360 ตอนนี้คุณต้องคำนวณตัวประกอบเพิ่มเติมสำหรับแต่ละเศษส่วนซึ่งกำหนดเป็นอัตราส่วนของ LCM ต่อตัวส่วน ดังนั้นตัวคูณเพิ่มเติมจะมีลักษณะดังนี้:

  • 360/8 = 45
  • 360/9 = 40
  • 360/12 = 30
  • 360/15 = 24
  • 360/18 = 20.

หลังจากนั้น เราคูณเศษส่วนทั้งหมดด้วยตัวประกอบเพิ่มเติมที่เกี่ยวข้องแล้วได้:

45/360 + 40/360 + 30/360 + 24/360 + 20/360.

เราสามารถรวมเศษส่วนดังกล่าวได้อย่างง่ายดายแล้วได้ผลลัพธ์เป็น 159/360 เราลดเศษส่วนลง 3 และดูคำตอบสุดท้าย - 53/120

การแก้สมการไดโอแฟนไทน์เชิงเส้น

สมการไดโอแฟนไทน์เชิงเส้นคือนิพจน์ในรูปแบบ ax + by = d หากอัตราส่วน d / gcd(a, b) เป็นจำนวนเต็ม สมการก็จะแก้ได้ในจำนวนเต็ม ลองตรวจสอบสมการสองสามสมการเพื่อดูว่าสมการเหล่านี้มีค่าเฉลยเป็นจำนวนเต็มหรือไม่ ก่อนอื่น ลองตรวจสอบสมการ 150x + 8y = 37 เมื่อใช้เครื่องคิดเลข เราจะพบว่า GCD (150.8) = 2 หาร 37/2 = 18.5 ตัวเลขไม่ใช่จำนวนเต็ม ดังนั้นสมการจึงไม่มีรากของจำนวนเต็ม

ลองตรวจสอบสมการ 1320x + 1760y = 10120 ใช้เครื่องคิดเลขหา GCD(1320, 1760) = 440 หาร 10120/440 = 23 ผลลัพธ์ที่ได้คือจำนวนเต็ม ดังนั้น สมการไดโอแฟนไทน์จึงแก้ได้ด้วยสัมประสิทธิ์จำนวนเต็ม .

บทสรุป

GCD และ LCM มีบทบาทสำคัญในทฤษฎีจำนวน และแนวความคิดเองก็มีการใช้กันอย่างแพร่หลายในสาขาคณิตศาสตร์ที่หลากหลาย ใช้เครื่องคิดเลขของเราคำนวณตัวหารที่มากที่สุดและผลคูณน้อยที่สุดของจำนวนตัวเลขใดๆ ก็ได้

ผลคูณคือตัวเลขที่หารด้วยจำนวนที่กำหนดโดยไม่มีเศษ ตัวคูณร่วมน้อย (LCM) ของกลุ่มตัวเลขคือจำนวนที่น้อยที่สุดที่หารด้วยแต่ละตัวเลขในกลุ่มโดยไม่ทิ้งเศษ ในการหาตัวคูณร่วมน้อย คุณต้องหาตัวประกอบเฉพาะของตัวเลขที่กำหนด LCM ยังสามารถคำนวณได้โดยใช้วิธีการอื่นอีกหลายวิธีที่ใช้กับกลุ่มที่มีตัวเลขตั้งแต่สองตัวขึ้นไป

ขั้นตอน

อนุกรมของทวีคูณ

    ดูตัวเลขเหล่านี้สิวิธีที่อธิบายไว้ในที่นี้เหมาะที่สุดเมื่อให้ตัวเลขสองตัว ซึ่งแต่ละตัวมีค่าน้อยกว่า 10 ถ้าให้ตัวเลขมากกว่า ให้ใช้วิธีอื่น

    • เช่น หาตัวคูณร่วมน้อยของ 5 กับ 8 ซึ่งเป็นตัวเลขเล็กๆ คุณจึงใช้วิธีนี้ได้
  1. ผลคูณคือตัวเลขที่หารด้วยจำนวนที่กำหนดโดยไม่มีเศษ หลายรายการสามารถพบได้ในตารางสูตรคูณ

    • ตัวอย่างเช่น ตัวเลขที่เป็นทวีคูณของ 5 ได้แก่ 5, 10, 15, 20, 25, 30, 35, 40
  2. เขียนชุดตัวเลขที่เป็นจำนวนทวีคูณของจำนวนแรกทำสิ่งนี้ด้วยการคูณตัวเลขแรกเพื่อเปรียบเทียบตัวเลขสองชุด

    • ตัวอย่างเช่น ตัวเลขที่เป็นทวีคูณของ 8 คือ 8, 16, 24, 32, 40, 48, 56 และ 64
  3. ค้นหาจำนวนที่น้อยที่สุดที่มีอยู่ในชุดทวีคูณทั้งสองชุดคุณอาจต้องเขียนชุดผลคูณยาวๆ เพื่อหาจำนวนทั้งหมด จำนวนที่น้อยที่สุดที่มีอยู่ในตัวคูณทั้งสองชุดคือตัวคูณร่วมน้อย

    • ตัวอย่างเช่น จำนวนที่น้อยที่สุดที่ปรากฏในชุดผลคูณของ 5 และ 8 คือหมายเลข 40 ดังนั้น 40 จึงเป็นจำนวนตัวคูณร่วมน้อยของ 5 และ 8

    ตัวประกอบที่สำคัญ

    1. ดูตัวเลขเหล่านี้สิวิธีที่อธิบายไว้ ณ ที่นี้เหมาะที่สุดเมื่อให้ตัวเลขสองตัว ซึ่งแต่ละตัวมีค่ามากกว่า 10 ถ้าให้ตัวเลขน้อยกว่า ให้ใช้วิธีอื่น

      • เช่น ค้นหาตัวคูณร่วมน้อยของตัวเลข 20 และ 84 แต่ละตัวเลขมีค่ามากกว่า 10 คุณจึงใช้วิธีนี้ได้
    2. แยกตัวประกอบจำนวนแรกให้เป็นตัวประกอบเฉพาะ.นั่นคือคุณต้องค้นหาจำนวนเฉพาะที่เมื่อคูณแล้วจะได้ผลลัพธ์เป็นจำนวนที่กำหนด เมื่อคุณพบปัจจัยเฉพาะแล้ว ให้เขียนพวกมันว่ามีความเท่าเทียมกัน

      • ตัวอย่างเช่น, 2 × 10 = 20 (\displaystyle (\mathbf (2) )\times 10=20)และ 2 × 5 = 10 (\displaystyle (\mathbf (2) )\times (\mathbf (5) )=10)- ดังนั้น ตัวประกอบเฉพาะของจำนวน 20 คือตัวเลข 2, 2 และ 5 เขียนเป็นนิพจน์:
    3. แยกตัวประกอบจำนวนที่สองให้เป็นตัวประกอบเฉพาะ.ทำแบบเดียวกับที่คุณแยกตัวประกอบจำนวนแรก นั่นคือ หาจำนวนเฉพาะที่เมื่อคูณแล้วจะได้จำนวนที่กำหนด

      • ตัวอย่างเช่น, 2 × 42 = 84 (\displaystyle (\mathbf (2) )\times 42=84), 7 × 6 = 42 (\displaystyle (\mathbf (7) )\times 6=42)และ 3 × 2 = 6 (\displaystyle (\mathbf (3) )\times (\mathbf (2) )=6)- ดังนั้น ตัวประกอบเฉพาะของเลข 84 คือตัวเลข 2, 7, 3 และ 2 เขียนเป็นนิพจน์:
    4. เขียนตัวประกอบร่วมของตัวเลขทั้งสอง.เขียนตัวประกอบเช่นการดำเนินการคูณ ขณะที่คุณเขียนตัวประกอบแต่ละตัว ให้ขีดฆ่าทั้งสองนิพจน์ (นิพจน์ที่อธิบายการแยกตัวประกอบของตัวเลขให้เป็นตัวประกอบเฉพาะ)

      • ตัวอย่างเช่น ตัวเลขทั้งสองมีตัวประกอบร่วมกันคือ 2 ดังนั้นจงเขียน 2 × (\displaystyle 2\times )และขีดฆ่า 2 ในทั้งสองพจน์
      • สิ่งที่ตัวเลขทั้งสองมีเหมือนกันคือตัวประกอบของ 2 อีกตัว ดังนั้นจงเขียนไว้ 2 × 2 (\รูปแบบการแสดงผล 2\คูณ 2)และขีดฆ่า 2 ตัวที่สองในทั้งสองนิพจน์
    5. เพิ่มตัวประกอบที่เหลือในการคูณปัจจัยเหล่านี้เป็นปัจจัยที่ไม่ได้ขีดฆ่าในทั้งสองนิพจน์ กล่าวคือ ปัจจัยที่ไม่เหมือนกันในตัวเลขทั้งสอง

      • ตัวอย่างเช่นในนิพจน์ 20 = 2 × 2 × 5 (\รูปแบบการแสดงผล 20=2\คูณ 2\คูณ 5)สอง (2) ทั้งสองถูกขีดฆ่าเนื่องจากเป็นปัจจัยร่วม ไม่มีการขีดฆ่าตัวประกอบ 5 ดังนั้นเขียนการดำเนินการคูณดังนี้: 2 × 2 × 5 (\รูปแบบการแสดงผล 2\คูณ 2\คูณ 5)
      • ในการแสดงออก 84 = 2 × 7 × 3 × 2 (\รูปแบบการแสดงผล 84=2\คูณ 7\คูณ 3\คูณ 2)ทั้งสอง (2) ก็ถูกขีดฆ่าเช่นกัน ไม่มีการขีดฆ่าตัวประกอบ 7 และ 3 ดังนั้นให้เขียนการดำเนินการคูณดังนี้: 2 × 2 × 5 × 7 × 3 (\รูปแบบการแสดงผล 2\คูณ 2\คูณ 5\คูณ 7\คูณ 3).
    6. คำนวณตัวคูณร่วมน้อย.เมื่อต้องการทำเช่นนี้ ให้คูณตัวเลขในการดำเนินการคูณที่เป็นลายลักษณ์อักษร

      • ตัวอย่างเช่น, 2 × 2 × 5 × 7 × 3 = 420 (\รูปแบบการแสดงผล 2\คูณ 2\คูณ 5\คูณ 7\คูณ 3=420)- ดังนั้นตัวคูณร่วมน้อยของ 20 กับ 84 คือ 420

    การหาปัจจัยร่วมกัน

    1. วาดตารางเหมือนกับเกมโอเอกซ์ตารางดังกล่าวประกอบด้วยเส้นคู่ขนานสองเส้นที่ตัดกัน (ที่มุมฉาก) กับเส้นคู่ขนานอีกสองเส้น นี่จะทำให้คุณมีสามแถวและสามคอลัมน์ (ตารางจะดูเหมือนไอคอน # มาก) เขียนตัวเลขแรกในบรรทัดแรกและคอลัมน์ที่สอง เขียนตัวเลขตัวที่สองในบรรทัดแรกและคอลัมน์ที่สาม

      • เช่น หาตัวคูณร่วมน้อยของตัวเลข 18 และ 30 เขียนเลข 18 ในแถวแรกและคอลัมน์ที่สอง และเขียนตัวเลข 30 ในแถวแรกและคอลัมน์ที่สาม
    2. หาตัวหารร่วมของตัวเลขทั้งสอง.เขียนลงในแถวแรกและคอลัมน์แรก เป็นการดีกว่าที่จะมองหาปัจจัยสำคัญ แต่นี่ไม่ใช่ข้อกำหนด

      • ตัวอย่างเช่น 18 และ 30 เป็นจำนวนคู่ ดังนั้นตัวประกอบร่วมคือ 2 ดังนั้นให้เขียน 2 ในแถวแรกและคอลัมน์แรก
    3. หารแต่ละตัวเลขด้วยตัวหารตัวแรกเขียนแต่ละผลหารภายใต้จำนวนที่เหมาะสม ผลหารคือผลลัพธ์ของการหารตัวเลขสองตัว

      • ตัวอย่างเช่น, 18 ۞ 2 = 9 (\displaystyle 18\div 2=9)ดังนั้นเขียน 9 ต่ำกว่า 18
      • 30 ۞ 2 = 15 (\displaystyle 30\div 2=15)ดังนั้นเขียน 15 ลงไปต่ำกว่า 30
    4. หาตัวหารร่วมของผลหารทั้งสอง.หากไม่มีตัวหารดังกล่าว ให้ข้ามสองขั้นตอนถัดไป หรือเขียนตัวหารในแถวที่สองและคอลัมน์แรก

      • เช่น 9 และ 15 หารด้วย 3 ลงตัว ดังนั้นให้เขียน 3 ในแถวที่สองและคอลัมน์แรก
    5. หารแต่ละผลหารด้วยตัวหารที่สอง.เขียนผลการหารแต่ละผลภายใต้ผลหารที่สอดคล้องกัน

      • ตัวอย่างเช่น, 9 ۞ 3 = 3 (\displaystyle 9\div 3=3)ดังนั้นเขียน 3 ใต้ 9.
      • 15 ۞ 3 = 5 (\displaystyle 15\div 3=5)ดังนั้นเขียน 5 ต่ำกว่า 15
    6. หากจำเป็น ให้เพิ่มเซลล์เพิ่มเติมลงในตารางทำซ้ำขั้นตอนที่อธิบายไว้จนกว่าผลหารจะมีตัวหารร่วม

    7. วงกลมตัวเลขในคอลัมน์แรกและแถวสุดท้ายของตารางจากนั้นเขียนตัวเลขที่เลือกเป็นการคูณ

      • ตัวอย่างเช่น ตัวเลข 2 และ 3 อยู่ในคอลัมน์แรก และตัวเลข 3 และ 5 อยู่ในแถวสุดท้าย ดังนั้นให้เขียนการดำเนินการคูณดังนี้: 2 × 3 × 3 × 5 (\รูปแบบการแสดงผล 2\คูณ 3\คูณ 3\คูณ 5).
    8. ค้นหาผลลัพธ์ของการคูณตัวเลขวิธีนี้จะคำนวณตัวคูณร่วมน้อยของตัวเลขที่กำหนดสองตัว

      • ตัวอย่างเช่น, 2 × 3 × 3 × 5 = 90 (\รูปแบบการแสดงผล 2\คูณ 3\คูณ 3\คูณ 5=90)- ดังนั้นตัวคูณร่วมน้อยของ 18 กับ 30 คือ 90

    อัลกอริธึมของยุคลิด

    1. จำคำศัพท์ที่เกี่ยวข้องกับการดำเนินการแบ่งเงินปันผลคือจำนวนที่จะหาร ตัวหารคือตัวเลขที่ถูกหารด้วย ผลหารเป็นผลจากการหารตัวเลขสองตัว เศษคือจำนวนที่เหลือเมื่อหารสองจำนวน

      • ตัวอย่างเช่นในนิพจน์ 15 ۞ 6 = 2 (\displaystyle 15\div 6=2)เพลงประกอบละคร 3:
        15 คือเงินปันผล
        6 เป็นตัวหาร
        2 คือความฉลาดทาง
        3 คือส่วนที่เหลือ

หมายเลขที่สอง: ข=

ตัวคั่นหลักพันไม่มีตัวคั่นช่องว่าง "´

ผลลัพธ์:

ตัวหารร่วมมาก gcd( ,)=6

ตัวคูณร่วมน้อยของ LCM( ,)=468

เรียกว่าจำนวนธรรมชาติที่ใหญ่ที่สุดที่สามารถหารด้วยจำนวน a และ b โดยไม่มีเศษเหลือ ตัวหารร่วมมาก(GCD) ของตัวเลขเหล่านี้ เขียนแทนด้วย gcd(a,b), (a,b), gcd(a,b) หรือ hcf(a,b)

ตัวคูณร่วมน้อย LCM ของจำนวนเต็มสองตัว a และ b คือจำนวนธรรมชาติที่น้อยที่สุดที่หารด้วย a และ b ลงตัวโดยไม่มีเศษ แสดงว่า LCM(a,b) หรือ lcm(a,b)

เรียกจำนวนเต็ม a และ b สำคัญซึ่งกันและกันถ้าไม่มีตัวหารร่วมกันนอกจาก +1 และ −1

ตัวหารร่วมมาก

ให้เลขบวกสองตัวมา 1 และ 2 1) จำเป็นต้องค้นหาตัวหารร่วมของตัวเลขเหล่านี้ เช่น หาตัวเลขดังกล่าว λ ซึ่งแบ่งตัวเลข 1 และ 2 ในเวลาเดียวกัน มาอธิบายอัลกอริทึมกัน

1) ในบทความนี้ เราจะเข้าใจว่าคำว่า number เป็นจำนวนเต็ม

อนุญาต 1 ≥ 2 และปล่อยให้

ที่ไหน 1 , 3 เป็นจำนวนเต็มบางตัว 3 < 2 (ส่วนที่เหลือของดิวิชั่น 1 ต่อ 2 ควรน้อยกว่านี้ 2).

เรามาแกล้งทำเป็นว่า λ แบ่ง 1 และ 2 แล้ว λ แบ่ง 1 2 และ λ แบ่ง 1 − 1 2 = 3 (ข้อความที่ 2 ของบทความ “การหารของตัวเลข การทดสอบการหาร”) ตามมาด้วยตัวหารร่วมทุกตัว 1 และ 2 คือตัวหารร่วม 2 และ 3. สิ่งที่ตรงกันข้ามก็เป็นจริงเช่นกันหาก λ ตัวหารร่วม 2 และ 3 แล้ว 1 2 และ 1 = 1 2 + 3 ก็หารด้วย λ - ดังนั้นตัวหารร่วม 2 และ 3 เป็นตัวหารร่วมด้วย 1 และ 2. เพราะ 3 < 2 ≤ 1 แล้วเราก็บอกได้ว่าคำตอบของโจทย์การหาตัวหารร่วมของตัวเลข 1 และ 2 ลดเหลือเป็นปัญหาที่ง่ายกว่าในการหาตัวหารร่วมของตัวเลข 2 และ 3 .

ถ้า 3 ≠0 เราก็หารได้ 2 บน 3. แล้ว

,

ที่ไหน 1 และ 4 เป็นจำนวนเต็มบางตัว ( เหลืออีก 4 นัดจากดิวิชั่น 2 บน 3 ( 4 < 3)). ด้วยเหตุผลเดียวกัน เราก็ได้ข้อสรุปว่าตัวหารร่วมของตัวเลข 3 และ 4 เกิดขึ้นพร้อมกับตัวหารร่วมของตัวเลข 2 และ 3 และยังมีตัวหารร่วมด้วย 1 และ 2. เพราะ 1 , 2 , 3 , 4, ... คือจำนวนที่ลดลงอย่างต่อเนื่อง และเนื่องจากมีจำนวนเต็มระหว่างจำนวนจำกัด 2 และ 0 จากนั้นในบางขั้นตอน nส่วนที่เหลือของการแบ่ง ไม่มี n+1 จะเท่ากับศูนย์ ( n+2 =0)

.

ตัวหารร่วมทุกตัว λ ตัวเลข 1 และ 2 เป็นตัวหารของตัวเลขด้วย 2 และ 3 , 3 และ 4 , .... และ n+1 . บทสนทนาก็เป็นจริงเช่นกัน นั่นคือตัวหารร่วมของตัวเลข และ n+1 ก็เป็นตัวหารของตัวเลขเช่นกัน n−1 และ ไม่ , .... , 2 และ 3 , 1 และ 2. แต่ตัวหารร่วมของตัวเลข และ n+1 คือตัวเลข n+1 เพราะ และ n+1 หารด้วย n+1 (จำไว้ว่า n+2 =0) เพราะฉะนั้น n+1 ก็เป็นตัวหารของตัวเลขเช่นกัน 1 และ 2 .

โปรดทราบว่าหมายเลข n+1 เป็นตัวหารที่มากที่สุดของตัวเลข และ n+1 เนื่องจากตัวหารที่ยิ่งใหญ่ที่สุด n+1 คือตัวมันเอง n+1 . ถ้า n+1 สามารถแสดงเป็นผลคูณของจำนวนเต็มได้ จากนั้นตัวเลขเหล่านี้ก็เป็นตัวหารร่วมของตัวเลขเช่นกัน 1 และ 2. ตัวเลข เรียกว่า n+1 ตัวหารร่วมมากตัวเลข 1 และ 2 .

ตัวเลข 1 และ 2 อาจเป็นจำนวนบวกหรือลบก็ได้ ถ้าตัวเลขตัวใดตัวหนึ่งมีค่าเท่ากับศูนย์ ตัวหารร่วมมากของตัวเลขเหล่านี้จะเท่ากับค่าสัมบูรณ์ของอีกจำนวนหนึ่ง ตัวหารร่วมมากที่สุดของจำนวนศูนย์นั้นไม่ได้ถูกกำหนดไว้

อัลกอริทึมข้างต้นเรียกว่า อัลกอริทึมแบบยุคลิดเพื่อหาตัวหารร่วมมากของจำนวนเต็มสองตัว

ตัวอย่างการหาตัวหารร่วมมากของตัวเลขสองตัว

ค้นหาตัวหารร่วมมากของตัวเลขสองตัว 630 และ 434

  • ขั้นตอนที่ 1 หารตัวเลข 630 ด้วย 434 ส่วนที่เหลือคือ 196
  • ขั้นตอนที่ 2 หารตัวเลข 434 ด้วย 196 ส่วนที่เหลือคือ 42
  • ขั้นตอนที่ 3 หารตัวเลข 196 ด้วย 42 ส่วนที่เหลือคือ 28
  • ขั้นตอนที่ 4 หารตัวเลข 42 ด้วย 28 ส่วนที่เหลือคือ 14
  • ขั้นตอนที่ 5 หารตัวเลข 28 ด้วย 14 ส่วนที่เหลือคือ 0

ในขั้นตอนที่ 5 ส่วนที่เหลือของการหารคือ 0 ดังนั้น ตัวหารร่วมมากของตัวเลข 630 และ 434 จึงเป็น 14 โปรดทราบว่าตัวเลข 2 และ 7 ก็เป็นตัวหารของตัวเลข 630 และ 434 เช่นกัน

ตัวเลขโคไพรม์

คำนิยาม 1. ให้ตัวหารร่วมมากของตัวเลข 1 และ 2 เท่ากับหนึ่ง จากนั้นจึงเรียกหมายเลขเหล่านี้ หมายเลขโคไพรม์โดยไม่มีตัวหารร่วมกัน

ทฤษฎีบท 1. ถ้า 1 และ 2 หมายเลขโคไพรม์ และ λ ตัวเลขจำนวนหนึ่ง แล้วก็ตัวหารร่วมของตัวเลข แล 1 และ 2 เป็นตัวหารร่วมของตัวเลขด้วย λ และ 2 .

การพิสูจน์. พิจารณาอัลกอริทึมแบบยุคลิดในการค้นหาตัวหารร่วมมากของตัวเลข 1 และ 2 (ดูด้านบน)

.

จากเงื่อนไขของทฤษฎีบท จะได้ว่าตัวหารร่วมมากของจำนวนนั้นเป็นไปตามนั้น 1 และ 2 และดังนั้น และ n+1 คือ 1 นั่นคือ n+1 = 1

ลองคูณความเท่าเทียมกันทั้งหมดนี้ด้วย λ , แล้ว

.

ให้ตัวหารร่วม 1 λ และ 2 ใช่ δ - แล้ว δ มาเป็นตัวคูณใน 1 λ , 1 2 λ และใน 1 λ - 1 2 λ = 3 λ (ดู "การหารตัวเลข" คำแถลง 2) ไกลออกไป δ มาเป็นตัวคูณใน 2 λ และ 2 3 λ และดังนั้นจึงรวมเป็นปัจจัยใน 2 λ - 2 3 λ = 4 λ .

ด้วยการใช้เหตุผลเช่นนี้ เราก็มั่นใจว่า δ มาเป็นตัวคูณใน n−1 λ และ n−1 n λ และด้วยเหตุนี้จึงเข้า n−1 λ n−1 n λ = n+1 λ - เพราะ n+1 =1 แล้ว δ มาเป็นตัวคูณใน λ - ดังนั้นจำนวน δ เป็นตัวหารร่วมของตัวเลข λ และ 2 .

ให้เราพิจารณากรณีพิเศษของทฤษฎีบท 1

ผลที่ตามมา 1. อนุญาต และ จำนวนเฉพาะค่อนข้างมาก - แล้วผลิตภัณฑ์ของพวกเขา เครื่องปรับอากาศเป็นจำนวนเฉพาะเทียบกับ .

จริงหรือ. จากทฤษฎีบท 1 เครื่องปรับอากาศและ มีตัวหารร่วมเหมือนกันกับ และ - แต่ตัวเลข และ ค่อนข้างง่าย เช่น มีตัวหารร่วมเพียงตัวเดียวคือ 1. แล้ว เครื่องปรับอากาศและ มีตัวหารร่วมร่วมตัวเดียวคือ 1 ดังนั้น เครื่องปรับอากาศและ เรียบง่ายซึ่งกันและกัน

ผลที่ตามมา 2. อนุญาต และ ตัวเลขโคไพรม์แล้วปล่อยให้ แบ่ง อาก้า- แล้ว แบ่งและ เค.

จริงหรือ. จากเงื่อนไขการอนุมัติ อาก้าและ มีตัวหารร่วมกัน - โดยอาศัยทฤษฎีบทที่ 1 จะต้องเป็นตัวหารร่วม และ เค- เพราะฉะนั้น แบ่ง เค.

ข้อพิสูจน์ที่ 1 สามารถสรุปได้

ผลที่ตามมา 3. 1. ให้ตัวเลข 1 , 2 , 3 , ..., m เป็นจำนวนเฉพาะสัมพันธ์กับจำนวน - แล้ว 1 2 , 1 2 · 3 , ..., 1 2 3 ··· m ผลคูณของจำนวนเหล่านี้เป็นจำนวนเฉพาะเทียบกับจำนวน .

2. ขอให้เรามีตัวเลขสองแถว

โดยให้ทุกจำนวนในชุดแรกเป็นจำนวนเฉพาะในอัตราส่วนของทุกจำนวนในชุดที่สอง แล้วสินค้า

คุณต้องค้นหาตัวเลขที่หารด้วยตัวเลขเหล่านี้แต่ละตัว

ถ้าจำนวนนั้นหารด้วย 1 ก็จะมีรูปแบบ ซา 1 ที่ไหน หมายเลขบางอย่าง ถ้า ถามเป็นตัวหารร่วมมากของตัวเลข 1 และ 2 แล้ว

ที่ไหน 1 เป็นจำนวนเต็ม แล้ว

เป็น ผลคูณร่วมน้อยของตัวเลข 1 และ 2 .

1 และ 2 ค่อนข้างเป็นจำนวนเฉพาะ จากนั้นก็เป็นตัวคูณร่วมน้อยของจำนวนนั้น 1 และ 2:

เราจำเป็นต้องหาตัวคูณร่วมน้อยของจำนวนเหล่านี้

จากที่กล่าวมาข้างต้นจะเป็นไปตามจำนวนทวีคูณใดๆ 1 , 2 , 3 ต้องเป็นจำนวนทวีคูณ ε และ 3 และกลับ. ให้ตัวคูณร่วมน้อยของตัวเลข ε และ 3 ใช่ ε 1. ต่อไปเป็นทวีคูณของตัวเลข 1 , 2 , 3 , 4 ต้องเป็นจำนวนทวีคูณ ε 1 และ 4. ให้ตัวคูณร่วมน้อยของตัวเลข ε 1 และ 4 ใช่ ε 2. ดังนั้นเราจึงพบว่ามีจำนวนทวีคูณทั้งหมด 1 , 2 , 3 ,..., m ตรงกับผลคูณของจำนวนหนึ่ง ε n ซึ่งเรียกว่าตัวคูณร่วมน้อยของจำนวนที่กำหนด

ในกรณีพิเศษเมื่อมีตัวเลข 1 , 2 , 3 ,..., m ค่อนข้างเป็นจำนวนเฉพาะ จากนั้นก็เป็นตัวคูณร่วมน้อยของจำนวนนั้น 1 , 2 ดังแสดงข้างต้น มีรูปแบบ (3) ต่อไปตั้งแต่ 3 ไพรม์สัมพันธ์กับตัวเลข 1 , 2 แล้ว 3 จำนวนเฉพาะ 1 · 2 (ข้อพิสูจน์ 1) หมายถึงตัวคูณร่วมน้อยของตัวเลข 1 , 2 , 3 เป็นตัวเลข 1 · 2 · 3. เมื่อพิจารณาในทำนองเดียวกัน เราก็ได้ข้อความต่อไปนี้

คำแถลง 1. ตัวคูณร่วมน้อยของจำนวนโคไพรม์ 1 , 2 , 3 ,..., m เท่ากับผลคูณของมัน 1 · 2 · 3 ··· ม.

คำแถลง 2. จำนวนใดๆ ที่หารด้วยจำนวนโคไพรม์แต่ละตัวลงตัว 1 , 2 , 3 ,..., m ก็หารด้วยผลคูณของมันได้เช่นกัน 1 · 2 · 3 ··· ม.

เพื่อให้เข้าใจวิธีคำนวณ LCM คุณต้องกำหนดความหมายของคำว่า "หลายรายการ" ก่อน


ผลคูณของ A คือจำนวนธรรมชาติที่หารด้วย A ลงตัวโดยไม่มีเศษ ดังนั้น จำนวนที่เป็นทวีคูณของ 5 จึงถือเป็น 15, 20, 25 และอื่นๆ


ตัวหารของจำนวนเฉพาะอาจมีจำนวนจำกัด แต่ตัวคูณมีจำนวนไม่จำกัด


ผลคูณร่วมของจำนวนธรรมชาติคือจำนวนที่หารลงตัวโดยไม่เหลือเศษ

วิธีค้นหาตัวคูณร่วมน้อยของตัวเลข

ตัวคูณร่วมน้อย (LCM) ของตัวเลข (สอง สาม หรือมากกว่า) คือจำนวนธรรมชาติที่น้อยที่สุดที่หารด้วยจำนวนเหล่านี้ทั้งหมด


หากต้องการค้นหา LOC คุณสามารถใช้ได้หลายวิธี


สำหรับจำนวนน้อย จะสะดวกที่จะจดจำนวนทวีคูณของตัวเลขเหล่านี้ลงในบรรทัดจนกว่าคุณจะพบตัวที่เหมือนกัน หลายรายการแสดงด้วยอักษรตัวใหญ่ K


ตัวอย่างเช่น สามารถเขียนผลคูณของ 4 ได้ดังนี้:


เค (4) = (8,12, 16, 20, 24, ...)


เค (6) = (12, 18, 24, ...)


ดังนั้น คุณจะเห็นว่าตัวคูณร่วมน้อยของตัวเลข 4 และ 6 คือหมายเลข 24 สัญกรณ์นี้ทำได้ดังนี้:


ล.ซม.(4, 6) = 24


หากตัวเลขมีขนาดใหญ่ ให้ค้นหาผลคูณร่วมของตัวเลขสามตัวขึ้นไป ควรใช้วิธีอื่นในการคำนวณ LCM


เพื่อที่จะทำงานให้สำเร็จ คุณต้องแยกตัวประกอบตัวเลขที่กำหนดให้เป็นตัวประกอบเฉพาะ


ก่อนอื่นคุณต้องเขียนการสลายตัวของจำนวนที่ใหญ่ที่สุดในบรรทัดและที่เหลือ - ด้านล่าง


การสลายตัวของตัวเลขแต่ละจำนวนอาจมีปัจจัยหลายประการที่แตกต่างกัน


ตัวอย่างเช่น ลองแยกตัวเลข 50 และ 20 ให้เป็นตัวประกอบเฉพาะ




ในการขยายจำนวนที่น้อยกว่า คุณควรเน้นปัจจัยที่ขาดหายไปในการขยายจำนวนที่มากที่สุดตัวแรก แล้วจึงบวกเข้าไป ในตัวอย่างที่นำเสนอ มีสองอันที่หายไป


ตอนนี้คุณสามารถคำนวณตัวคูณร่วมน้อยของ 20 และ 50 ได้แล้ว


ค.ศ.(20, 50) = 2 * 5 * 5 * 2 = 100


ดังนั้นผลคูณของตัวประกอบเฉพาะของจำนวนที่มากกว่าและตัวประกอบของจำนวนที่สองที่ไม่รวมอยู่ในการขยายของจำนวนที่มากกว่าจะเป็นตัวคูณร่วมน้อย


หากต้องการค้นหา LCM ของตัวเลขสามตัวขึ้นไป คุณควรแยกตัวประกอบทั้งหมดให้เป็นตัวประกอบเฉพาะ ดังเช่นในกรณีก่อนหน้า


ตามตัวอย่าง คุณสามารถค้นหาตัวคูณร่วมน้อยของตัวเลข 16, 24, 36 ได้


36 = 2 * 2 * 3 * 3


24 = 2 * 2 * 2 * 3


16 = 2 * 2 * 2 * 2


ดังนั้น มีเพียงสองสองจากการขยายตัวของสิบหกเท่านั้นที่ไม่รวมอยู่ในการแยกตัวประกอบของจำนวนที่มากกว่า (หนึ่งอยู่ในการขยายตัวของยี่สิบสี่)


ดังนั้นจึงจำเป็นต้องเพิ่มเข้าไปในการขยายจำนวนที่มากขึ้น


ล.ซม.(12, 16, 36) = 2 * 2 * 3 * 3 * 2 * 2 = 9


มีกรณีพิเศษในการพิจารณาตัวคูณร่วมน้อย ดังนั้น หากตัวเลขตัวใดตัวหนึ่งสามารถหารกันโดยไม่มีเศษ จำนวนที่มากกว่านั้นก็จะเป็นตัวคูณร่วมน้อย


ตัวอย่างเช่น LCM ของสิบสองและยี่สิบสี่คือยี่สิบสี่


หากจำเป็นต้องค้นหาตัวคูณร่วมน้อยของจำนวนโคไพรม์ที่ไม่มีตัวหารเหมือนกัน LCM จะเท่ากับผลคูณของจำนวนนั้น


ตัวอย่างเช่น LCM (10, 11) = 110

ตัวเลือกของบรรณาธิการ
ขั้นตอน... เราต้องปีนวันละกี่สิบอัน! การเคลื่อนไหวคือชีวิต และเราไม่ได้สังเกตว่าเราจบลงด้วยการเดินเท้าอย่างไร...

หากในความฝันศัตรูของคุณพยายามแทรกแซงคุณความสำเร็จและความเจริญรุ่งเรืองรอคุณอยู่ในกิจการทั้งหมดของคุณ พูดคุยกับศัตรูของคุณในความฝัน -...

ตามคำสั่งของประธานาธิบดี ปี 2560 ที่จะถึงนี้จะเป็นปีแห่งระบบนิเวศน์ รวมถึงแหล่งธรรมชาติที่ได้รับการคุ้มครองเป็นพิเศษ การตัดสินใจดังกล่าว...

บทวิจารณ์การค้าต่างประเทศของรัสเซีย การค้าระหว่างรัสเซียกับเกาหลีเหนือ (เกาหลีเหนือ) ในปี 2560 จัดทำโดยเว็บไซต์การค้าต่างประเทศของรัสเซีย บน...
บทเรียนหมายเลข 15-16 สังคมศึกษาเกรด 11 ครูสังคมศึกษาของโรงเรียนมัธยม Kastorensky หมายเลข 1 Danilov V. N. การเงิน...
1 สไลด์ 2 สไลด์ แผนการสอน บทนำ ระบบธนาคาร สถาบันการเงิน อัตราเงินเฟ้อ: ประเภท สาเหตุ และผลที่ตามมา บทสรุป 3...
บางครั้งพวกเราบางคนได้ยินเกี่ยวกับสัญชาติเช่นอาวาร์ Avars เป็นชนพื้นเมืองประเภทใดที่อาศัยอยู่ในภาคตะวันออก...
โรคข้ออักเสบ โรคข้ออักเสบ และโรคข้อต่ออื่นๆ เป็นปัญหาที่แท้จริงสำหรับคนส่วนใหญ่ โดยเฉพาะในวัยชรา ของพวกเขา...
ราคาต่อหน่วยอาณาเขตสำหรับการก่อสร้างและงานก่อสร้างพิเศษ TER-2001 มีไว้สำหรับใช้ใน...