Главные правила физики. Законы физики - законы жизни


Ни одна сфера человеческой деятельности не обходится без точных наук. И как бы ни были сложны человеческие взаимоотношения, они тоже сводятся к этим законам. предлагает вспомнить законы физики, с которыми человек сталкивается и переживает каждый день своей жизни.



Самый простой, но самый важный закон – это Закон сохранения и преобразования энергии .

Энергия любой замкнутой системы при всех процессах, происходящих в системе, остается постоянной. А мы с Вами именно в такой замкнутой системе и находимся. Т.е. сколько отдадим, столько и получим. Если мы хотим что-то получить, надо столько же перед этим отдать. И никак иначе!

А нам, конечно же, хочется получать большую зарплату, а на работу при этом не ходить. Иногда создается иллюзия, что «дуракам везет» и многим счастье сваливается на голову. Вчитайтесь в любую сказку. Героям постоянно надо преодолевать огромные трудности! То искупаться в воде студеной, то в кипятке.

Мужчины обращают на себя внимание женщин ухаживаниями. Женщины в свою очередь заботятся потом об этих мужчинах и о детях. И так далее. Так что, если вы хотите что-то получить, потрудитесь сначала отдать.

Сила действия равна силе противодействия.

Этот закон физики отражает предыдущий, в принципе. Если человек совершил негативный поступок – осознанный или нет – а потом получил ответ, т.е. противодействие. Иногда причина и следствие бывают разнесены во времени, и можно сразу и не понять, откуда ветер дует. Надо, главное, помнить, что ничего просто так не бывает.

Закон рычага.

Архимед воскликнул: «Дайте мне точку опоры, и я переверну Землю! ». Любую тяжесть можно перенести, если подобрать правильный рычаг. Нужно всегда прикинуть какой длины понадобится рычаг, чтобы добиться той или иной цели и сделать для себя вывод, расставить приоритеты: нужно ли тратить столько сил, чтобы создать правильный рычаг и передвинуть эту тяжесть или проще оставить ее в покое и заняться другой деятельностью.

Правило буравчика.

Правило заключается в том, что указывает на направление магнитного поля. Это правило отвечает на вечный вопрос: кто виноват? И указывает на то, что во всем, что с нами происходит, виноваты мы сами. Как бы обидно не было, как бы сложно не было, как бы, на первый взгляд несправедливо не было, надо всегда отдавать себе отчет в том, что причиной изначально были мы сами.

Закон гвоздя .

Когда человек хочет забить гвоздь, он же не стучит где-то рядом с гвоздем, он стучит именно по шляпке гвоздя. Но ведь гвозди сами не залезают в стены. Нужно всегда подбирать правильный молоток, чтобы не разбить гвоздь кувалдой. И забивая, надо рассчитывать удар, чтобы не погнулась шляпка. Будьте проще, заботьтесь друг о друге. Научитесь думать о ближнем.

И наконец, закон Энтропии.

Под энтропией понимают меру беспорядка системы. Иными словами, чем больше хаоса в системе, тем больше энтропия. Более точная формулировка: при самопроизвольных процессах, протекающих в системах, энтропия всегда возрастает. Как правило, все самопроизвольные процессы необратимы. Они приводят к реальным изменениям в системе, и вернуть ее в первоначальное состояние без затраты энергии невозможно. При этом нельзя в точности повторить (на все 100%) ее исходное состояние.

Чтобы лучше уяснить, о каком порядке и беспорядке идет речь, поставим опыт. Насыплем в стеклянную банку чёрных и белых дробинок. Сначала насыплем чёрных, затем белых. Дробинки будут располагаться в два слоя: снизу чёрный, сверху белый – все упорядочено. Затем несколько раз встряхнем банку. Дробинки равномерно перемешаются. И сколько бы мы затем не трясли эту банку, нам вряд ли удастся добиться, чтобы дробинки снова расположились в два слоя. Вот она, энтропия в действии!

Состояние, когда дробинки были расположены в два слоя, считается упорядоченным. Состояние, когда дробинки равномерно перемешаны, считается беспорядочным. Чтобы вернуться в упорядоченное состояние, нужно практически чудо! Или повторная кропотливая работа с дробинками. А чтобы навести хаос в банке, почти не требуется усилий.

Автомобильное колесо. Когда оно накачено, в нем избыток свободной энергии. Колесо может ехать, и значит, оно работает. Это порядок. А если проколоть колесо? Давление в нем упадет, свободная энергия «уйдет» в окружающую среду (рассеется), и работать такое колесо уже не сможет. Это хаос. Чтобы вернуть систему в исходное состояние, т.е. навести порядок, нужно провести немалую работу: заклеить камеру, смонтировать колесо, накачать его и т.д., после чего это опять нужная вещь, которая способна приносить пользу.

Тепло передается от горячего тела холодному, а не наоборот. Обратный процесс теоретически возможен, а практически никто не возьмется это делать, поскольку потребуются колоссальные усилия, специальные установки и оборудование.

Также и в обществе. Люди стареют. Дома рушатся. Утесы оседают в море. Галактики разбегаются. К беспорядку самопроизвольно стремится любая окружающая нас действительность.

Однако люди часто говорят о беспорядке как о свободе: «Нет, не хотим мы порядка! Дайте нам такую свободу, чтобы каждый мог делать то, что хочет! » Но когда каждый делает, что хочет, это не свобода – это хаос. В наше время многие восхваляют беспорядок, пропагандируют анархию - словом, все то, что разрушает и разделяет. Но свобода - не в хаосе, свобода именно в порядке.

Упорядочивая свою жизнь, человек создает себе запас свободной энергии, которую затем реализует на осуществление своих планов: работу, учебу, отдых, творчество, спорт и т.п. – иными словами, противостоит энтропии. Иначе, как бы мы смогли накопить за последние 250 лет столько материальных ценностей?!

Энтропия – это мера беспорядка, мера необратимого рассеивания энергии. Чем больше энтропия, тем больше беспорядка. Дом, в котором никто не живет, ветшает. Железо со временем ржавеет, автомобиль стареет. Отношения, о сохранении которых никто не заботится, разрушаются. Так и все остальное в нашей жизни, совершенно все!

Естественное состояние природы не равновесие, а возрастание энтропии. Этот закон неумолимо работает и в жизни одного человека. Ему ничего не надо делать, чтобы его энтропия возрастала, это происходит самопроизвольно, по закону природы. Для того чтобы снизить энтропию (беспорядок), надо приложить немало усилий. Это своего рода пощечина позитивным до дури людям (под лежачий камень и вода не течет), которых довольно много!

Поддержание успеха требует постоянных усилий. Если мы не развиваемся, то мы деградируем. И чтобы сохранить то, что у нас было раньше, мы должны сегодня сделать больше, чем делали вчера. Вещи можно содержать в порядке и даже улучшить: если краска на доме выцвела, его можно покрасить заново, причем еще красивее, чем раньше.

Люди должны пытаться «усмирить» произвольное деструктивное поведение, которое преобладает в современном мире повсеместно, стараться снизить состояние хаоса, который мы же и разогнали до грандиозных пределов. И это физический закон, а не просто треп о депрессии и негативном мышлении. Всё либо развивается, либо деградирует.

Живой организм рождается, развивается и умирает, и никто никогда не наблюдал, чтобы после смерти он оживал, молодел и возвращался в семя или утробу. Когда говорят, что прошлое никогда не возвращается, то, конечно, имеют в виду, в первую очередь, эти жизненные явления. Развитие организмов задает положительное направление стрелы времени, и смена одного состояния системы другим происходит всегда в одном направлении для всех без исключения процессов.

Валериан Чупин

Источник информации: Чайковские.Новости


Комментарии (3)

Богатство современного общества прирастает, и будет прирастать во все большей мере, прежде всего всеобщим трудом. Промышленный капитал явился первой исторической формой общественного производства, когда интенсивно начал эксплуатироваться всеобщий труд. Причем сначала тот, который достался ему даром. Наука, как заметил Маркс, ничего не стоила капиталу. Действительно, ни один капиталист не заплатил вознаграждение ни Архимеду, ни Кардано, ни Галилею, ни Гюйгенсу, ни Ньютону за практическое использование их идей. Но именно промышленный капитал в массовом масштабе начинает эксплуатировать механическую технику, а тем самым и всеобщий труд, овеществленный в ней. Маркс К, Энгельс Ф. Соч., т. 25, ч. 1, с. 116.

Введение

1.Законы Ньютона

1.1. Зако́н ине́рции (Первый закон Нью́тона)

1.2 Закон движения

1.3. Зако́н сохране́ния и́мпульса (Зако́н сохране́ния коли́чества движения)

1.4. Силы инерции

1.5. Закон вязкости

2.1. Законы термодинамики


    1. Закон Всемирного тяготения

3.2. Гравитационное взаимодействие

3.3. Небесная механика


    1. Сильные гравитационные поля

3.5. Современные классические теории гравитации

Заключение

Литература

Введение

Фундаментальные законы физики описывают важнейшие явления в природе и Вселенной. Они позволяют объяснить и даже предсказать многие явления. Так, опираясь только на фундаментальные законы классической физики (законы Ньютона, законы термодинамики и т.д.) человечество успешно осваивает космос, отправляет космические аппараты на другие планеты.

Я хочу рассмотреть в данной работе наиболее важные законы физики и их взаимосвязь. Наиболее важными законами классической механики являются законы Ньютона, которых достаточно, чтобы описать явления в макромире (без учёта высоких значений скорости или массы, что изучается в ОТО – Общей теории Относительности, или СТО – специальной теории относительности.)


  1. Законы Ньютона

Законы механики Ньютона - три закона, лежащие в основе т. н. классической механики. Сформулированы И. Ньютоном (1687). Первый закон: “Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние”. Второй закон: “Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует”. Третий закон: “Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны”.

1.1. Зако ́ н ине ́ рции (Первый закон Нью ́ тона) : свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае непоступательного движения). Иными словами, телам свойственна ине́рция (от лат. inertia - “бездеятельность”, “косность”), то есть явление сохранения скорости, если внешние воздействия на них скомпенсированы.

Системы отсчёта, в которых выполняется закон инерции, называются инерциальными системами отсчёта (ИСО).

Впервые закон инерции был сформулирован Галилео Галилеем, который после множества опытов заключил, что для движения свободного тела с постоянной скоростью не нужно какой-либо внешней причины. До этого общепринятой была иная точка зрения (восходящая к Аристотелю): свободное тело находится в состоянии покоя, а для движения с постоянной скоростью необходимо приложение постоянной силы.

Впоследствии Ньютон сформулировал закон инерции в качестве первого из трёх своих знаменитых законов.

Принцип относительности Галилея: во всех инерциальных системах отсчета все физические процессы протекают одинаково. В системе отсчета, приведенной в состояние покоя или равномерного прямолинейного движения относительно инерциальной системы отсчета (условно - “покоящейся”) все процессы протекают точно так же, как и в покоящейся системе.

Следует отметить что понятие инерциальной системы отсчета - абстрактная модель (некий идеальный объект рассматриваемый вместо реального объекта. Примерами абстрактной модели служат абсолютно твердое тело или невесомая нить), реальные системы отсчета всегда связаны с каким-либо объектом и соответствие реально наблюдаемого движения тел в таких системах с результатами расчетов будет неполным.

1.2 Закон движения - математическая формулировка того, как движется тело или как происходит движение более общего вида.

В классической механике материальной точки закон движения представляет собой три зависимости трёх пространственных координат от времени, либо зависимость одной векторной величины (радиус-вектора) от времени, вида

Закон движения может быть найден, в зависимости от задачи, либо из дифференциальных законов механики, либо из интегральных.

Закон сохранения энергии - основной закон природы, заключающийся в том, что энергия замкнутой системы сохраняется во времени. Другими словами, энергия не может возникнуть из ничего и не может в никуда исчезнуть, она может только переходить из одной формы в другую.

Закон сохранения энергии встречается в различных разделах физики и проявляется в сохранении различных видов энергии. Например, в классической механике закон проявляется в сохранении механической энергии (суммы потенциальной и кинетической энергий). В термодинамике закон сохранения энергии называется первым началом термодинамики и говорит о сохранении энергии в сумме с тепловой энергией.

Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то правильнее называть его не законом, а принципом сохранения энергии.

Частный случай - Закон сохранения механической энергии - механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии сил типа трения (диссипативных сил) механическая энергия не возникает из ничего и не может никуда исчезнуть.

Ек1+Еп1=Ек2+Еп2

Закон сохранения энергии - это интегральный закон. Это значит, что он складывается из действия дифференциальных законов и является свойством их совокупного действия. Например, иногда говорят, что невозможность создать вечный двигатель обусловлена законом сохранения энергии. Но это не так. На самом деле, в каждом проекте вечного двигателя срабатывает один из дифференциальных законов и именно он делает двигатель неработоспособным. Закон сохранения энергии просто обобщает этот факт.

Согласно теореме Нётер, закон сохранения механической энергии является следствием однородности времени.

1.3. Зако ́ н сохране ́ ния и ́ мпульса (Зако ́ н сохране ́ ния коли ́ чества движения) утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил. В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Однако этот закон сохранения верен и в случаях, когда ньютоновская механика неприменима (релятивистская физика, квантовая механика).

Как и любой из законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства

Третий закон Ньютона объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой F12, а второе - на первое с силой F21. Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Сам закон:

Тела действуют друг на друга с силами, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению: .

1.4. Силы инерции

Законы Ньютона, строго говоря, справедливы только в инерциальных системах отсчета. Если мы честно запишем уравнение движения тела в неинерциальной системе отсчета, то оно будет по виду отличаться от второго закона Ньютона. Однако часто, для упрощения рассмотрения, вводят некую фиктивную “силу инерции”, и тогда эти уравнения движения переписываются в виде, очень похожем на второй закон Ньютона. Математически здесь всё корректно (правильно), но с точки зрения физики новую фиктивную силу нельзя рассматривать как нечто реальное, как результат некоторого реального взаимодействия. Ещё раз подчеркнём: “сила инерции” - это лишь удобная параметризация того, как отличаются законы движения в инерциальной и неинерциальной системах отсчета.

1.5. Закон вязкости

Закон вязкости (внутреннего трения) Ньютона - математическое выражение, связывающее напряжение внутреннего трения τ (вязкость) и изменение скорости среды v в пространстве

(скорость деформации) для текучих тел (жидкостей и газов):

где величина η называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости (единица СГС - пуаз). Кинематическим коэффициентом вязкости называется величина μ = η / ρ (единица СГС - Стокс, ρ − плотность среды).

Закон Ньютона может быть получен аналитически приемами физической кинетики, где вязкость рассматривается обычно одновременно с теплопроводностью и соответсвующим законом Фурье для теплопроводности. В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

где - средняя скорость теплового движения молекул, λ − средняя длина свободного пробега.

2.1. Законы термодинамики

Термодинамика основывается на трёх законах, которые сформулированы на основе экспериментальных данных и поэтому могут быть приняты как постулаты.

* 1-й закон термодинамики. Представляет собой формулировку обобщённого закона сохранения энергии для термодинамических процессов. В наиболее простой форме его можно записать как δQ = δA + d"U, где dU есть полный дифференциал внутренней энергии системы, а δQ и δA есть элементарное количество теплоты и элементарная работа, совершенная над системой соответственно. Нужно учитывать, что δA и δQ нельзя считать дифференциалами в обычном смысле этого понятия. С точки зрения квантовых представлений этот закон можно интерпретировать следующим образом: dU есть изменение энергии данной квантовой системы, δA есть изменение энергии системы, обусловленное изменением заселённости энергетических уровней системы, а δQ есть изменение энергии квантовой системы, обусловленное изменением структуры энергетических уровней.

* 2-й закон термодинамики: Второй закон термодинамики исключает возможность создания вечного двигателя второго рода. Имеется несколько различных, но в тоже время эквивалентных формулировок этого закона. 1 - Постулат Клаузиуса. Процесс, при котором не происходит других изменений, кроме передачи теплоты от горячего тела к холодному, является необратимым, то есть теплота не может перейти от холодного тела к горячему без каких либо других изменений в системе. Это явление называют рассеиванием или дисперсией энергии. 2 - Постулат Кельвина. Процесс, при котором работа переходит в теплоту без каких либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.

* 3-й закон термодинамики: Теорема Нернста: Энтропия любой системы при абсолютном нуле температуры всегда может быть принята равной нулю

3.1. Закон всемирного тяготения

Гравита́ция (всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas - “тяжесть”) - дальнодействующее фундаментальное взаимодействие в природе, которому подвержены все материальные тела. По современным данным, является универсальным взаимодействием в том смысле, что, в отличие от любых других сил, всем без исключения телам независимо от их массы придаёт одинаковое ускорение. Главным образом гравитация играет определяющую роль в космических масштабах. Термин гравитация используется также как название раздела физики, изучающего гравитационное взаимодействие. Наиболее успешной современной физической теорией в классической физике, описывающей гравитацию, является общая теория относительности, квантовая теория гравитационного взаимодействия пока не построена.

3.2. Гравитационное взаимодействие

Гравитационное взаимодействие - одно из четырёх фундаментальных взаимодействий в нашем мире. В рамках классической механики, гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, есть

Здесь G - гравитационная постоянная, равная м³/(кг с²). Знак минус означает, что сила, действующая на тело, всегда равна по направлению радиус-вектору, направленному на тело, т. е. гравитационное взаимодействие приводит всегда к притяжению любых тел.

Поле тяжести потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность поля тяжести влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в поле тяжести часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты - планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля. Гравитация - слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это тем не менее очень важная сила во Вселенной. Для сравнения: полный электрический заряд этих тел ноль, так как вещество в целом электрически нейтрально. Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления - орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. В античные времена Аристотель считал, что объекты с разной массой падают с разной скоростью. Только много позже Галилео Галилей экспериментально определил, что это не так - если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.

3.3. Небесная механика и некоторые её задачи

Раздел механики, изучающий движение тел в пустом пространстве только под действием гравитации называется небесной механикой.

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух тел в пустом пространстве. Эта задача решается аналитически до конца; результат её решения часто формулируют в виде трёх законов Кеплера.

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении, достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе, эта неустойчивость не позволяет предсказать движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений, и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы, аттракторы, хаотичность и т. д. Наглядный пример таких явлений - нетривиальная структурa колец Сатурна.

Несмотря на попытки описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса.

3.4. Сильные гравитационные поля

В сильных гравитационных полях, при движении с релятивистскими скоростями, начинают проявляться эффекты общей теории относительности:

Отклонение закона тяготения от ньютоновского;

Запаздывание потенциалов, связанное с конечной скоростью распространения гравитационных возмущений; появление гравитационных волн;

Эффекты нелинейности: гравитационные волны имеют свойство взаимодействовать друг с другом, поэтому принцип суперпозиции волн в сильных полях уже не выполняется;

Изменение геометрии пространства-времени;

Возникновение черных дыр;

3.5. Современные классические теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных экспериментальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая классическая теория гравитации - общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой (см. статью Альтернативные теории гравитации). Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

Теория гравитации Ньютона основана на понятии силы тяготения, которая является дальнодействующей силой: она действует мгновенно на любом расстоянии. Этот мгновенный характер действия несовместим с полевой парадигмой современной физики и, в частности, со специальной теорией относительности, созданной в 1905 году Эйнштейном, вдохновлённым работами Пуанкаре и Лоренца. В теории Эйнштейна никакая информация не может распространиться быстрее скорости света в вакууме.

Математически сила гравитации Ньютона выводится из потенциальной энергии тела в гравитационном поле. Потенциал гравитации, соответствующий этой потенциальной энергии, подчиняется уравнению Пуассона, которое не инвариантно при преобразованиях Лоренца. Причина неинвариантности заключается в том, что энергия в специальной теории относительности не является скалярной величиной, а переходит во временну́ю компоненту 4-вектора. Векторная же теория гравитации оказывается аналогичной теории электромагнитного поля Максвелла и приводит к отрицательной энергии гравитационных волн, что связано с характером взаимодействия: одноимённые заряды (массы) в гравитации притягиваются, а не отталкиваются, как в электромагнетизме. Таким образом, теория гравитации Ньютона несовместима с фундаментальным принципом специальной теории относительности - инвариантностью законов природы в любой инерциальной системе отсчёта, а прямое векторное обобщение теории Ньютона, впервые предложенное Пуанкаре в 1905 году в его работе “О динамике электрона”, приводит к физически неудовлетворительным результатам.

Эйнштейн начал поиск теории гравитации, которая была бы совместима с принципом инвариантности законов природы относительно любой системы отсчёта. Результатом этого поиска явилась общая теория относительности, основанная на принципе тождественности гравитационной и инертной массы.

Принцип равенства гравитационной и инертной масс

В классической механике Ньютона существует два понятия массы: первое относится ко второму закону Ньютона, а второе - к закону всемирного тяготения. Первая масса - инертная (или инерционная) - есть отношение негравитационной силы, действующей на тело, к его ускорению. Вторая масса - гравитационная (или, как её иногда называют, тяжёлая) - определяет силу притяжения тела другими телами и его собственную силу притяжения. Вообще говоря, эти две массы измеряются, как видно из описания, в различных экспериментах, поэтому совершенно не обязаны быть пропорциональными друг другу. Их строгая пропорциональность позволяет говорить о единой массе тела как в негравитационных, так и в гравитационных взаимодействиях. Подходящим выбором единиц можно сделать эти массы равными друг другу.

Сам принцип был выдвинут ещё Исааком Ньютоном, а равенство масс было проверено им экспериментально с относительной точностью 10−3. В конце XIX века более тонкие эксперименты провёл Этвёш, доведя точность проверки принципа до 10−9. В течение XX века экспериментальная техника позволила подтвердить равенство масс с относительной точностью 10−12-10−13 (Брагинский, Дикке и т. д.).

Иногда принцип равенства гравитационной и инертной масс называют слабым принципом эквивалентности. Альберт Эйнштейн положил его в основу общей теории относительности.

Принцип движения по геодезическим линиям

Если гравитационная масса точно равна инерционной, то в выражении для ускорения тела, на которое действуют лишь гравитационные силы, обе массы сокращаются. Поэтому ускорение тела, а следовательно, и его траектория не зависит от массы и внутреннего строения тела. Если же все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение можно связать не со свойствами тел, а со свойствами самого пространства в этой точке.

Таким образом, описание гравитационного взаимодействия между телами можно свести к описанию пространства-времени, в котором двигаются тела. Естественно предположить, как это и сделал Эйнштейн, что тела двигаются по инерции, то есть так, что их ускорение в собственной системе отсчёта равно нулю. Траектории тел тогда будут геодезическими линиями, теория которых была разработана математиками ещё в XIX веке.

Сами геодезические линии можно найти, если задать в пространстве-времени аналог расстояния между двумя событиями, называемый по традиции интервалом или мировой функцией. Интервал в трёхмерном пространстве и одномерном времени (иными словами, в четырёхмерном пространстве-времени) задаётся 10 независимыми компонентами метрического тензора. Эти 10 чисел образуют метрику пространства. Она определяет “расстояние” между двумя бесконечно близкими точками пространства-времени в различных направлениях. Геодезические линии, соответствующие мировым линиям физических тел, скорость которых меньше скорости света, оказываются линиями наибольшего собственного времени, то есть времени, измеряемого часами, жёстко скреплёнными с телом, следующим по этой траектории.

Современные эксперименты подтверждают движение тел по геодезическим линиям с той же точностью, как и равенство гравитационной и инертной масс.

Заключение

Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса. Далее, надо потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел U(|r1-r2|). Тогда возникает закон сохранения суммарной механической энергии взаимодействующих тел:

Законы Ньютона являются основными законами механики. Из них могут быть выведены все остальные законы механики.

В то же время, Законы Ньютона - не самый глубокий уровень формулирования классической механики. В рамках лагранжевой механики имеется одна-единственная формула (запись механического действия) и один-единственный постулат (тела движутся так, чтобы действие было минимальным), и из этого можно вывести все законы Ньютона. Более того, в рамках лагранжева формализма можно легко рассмотреть гипотетические ситуации, в которых действие имеет какой-либо другой вид. При этом уравнения движения станут уже непохожими на законы Ньютона, но сама классическая механика будет по-прежнему применима…

Решение уравнений движения

Уравнение F = ma (то есть второй закон Ньютона) является дифференциальным уравнением: ускорение есть вторая производная от координаты по времени. Это значит, что эволюцию механической системы во времени можно однозначно определить, если задать её начальные координаты и начальные скорости. Заметим, что если бы уравнения, описывающие наш мир, были бы уравнениями первого порядка, то из нашего мира исчезли бы такие явления, как инерция, колебания, волны.

Изучение Фундаментальных законов физики подтверждает, что наука поступательно развивается: каждый этап, каждый открытый закон является этапом в развитии, но не даёт окончательных ответов на все вопросы.

Литература:


  1. Большая Советская Энциклопедия (Ньютона Законы механики и др. статьи), 1977, “Советская Энциклопедия”

  2. Онлайн-энциклопедия www.wikipedia.com
3. Библиотека ” Детлаф А.А., Яворский Б.М., Милковская Л.Б. - Курс физики (том 1). Механика. Основы молекулярной физики и термодинамики

Федеральное агентство по образованию

ГОУ ВПО Рыбинская государственная авиационная академия им. П.А.Соловьёва

Кафедра “Общей и технической физики”

РЕФЕРАТ

По дисциплине “Концепции современного естествознания”

Тема: “Фундаментальные законы физики”

Группа ЗКС-07

Студент Балшин А.Н.

Преподаватель: Василюк О.В.

Хелен Черски (Helen Czerski)

Физик, океанограф, ведущая научно-популярных программ на BBC.

Когда речь заходит о физике, мы представляем какие-то формулы, нечто странное и непонятное, ненужное обычному человеку. Возможно, мы слышали что-то о квантовой механике и космологии. Но между этими двумя полюсами как раз и находится всё, что составляет нашу повседневную жизнь: планеты и бутерброды, облака и вулканы, пузыри и музыкальные инструменты. И всеми ими управляет относительно небольшое число физических законов.

Мы постоянно можем наблюдать эти законы в действии. Возьмите, например, два яйца - сырое и варёное - и раскрутите их, а затем остановите. Варёное яйцо останется неподвижным, сырое снова начнёт вращаться. Всё потому, что вы остановили только скорлупу, а жидкость внутри продолжает вращение.

Это наглядная демонстрация закона сохранения момента импульса . Упрощённо его можно сформулировать так: начав вращаться вокруг постоянной оси, система продолжит вращение, пока её что-то не остановит. Это один из фундаментальных законов Вселенной.

Он пригождается не только, когда нужно отличить варёное яйцо от сырого. С его помощью также можно объяснить, как космический телескоп «Хаббл», находясь без какой-либо опоры в пространстве, наводит объектив на определённый участок неба. Просто внутри у него вращающиеся гироскопы, которые, по сути, ведут себя так же, как и сырое яйцо. Сам телескоп вращается вокруг них и таким образом меняет своё положение. Получается, закон, который мы можем протестировать у себя на кухне, объясняет и устройство одной из самых выдающихся технологий человечества.

Зная основные законы, регулирующие нашу повседневную жизнь, мы перестаём чувствовать себя беспомощными.

Чтобы понимать, как устроен окружающий нас мир, мы должны сначала разобраться с его основами - . Мы должны понять, что физика - это не только чудаковатые учёные в лабораториях или сложные формулы. Она прямо перед нами, доступная каждому.

С чего же начать, подумаете вы. Наверняка вы замечали что-нибудь странное или непонятное, но вместо того, чтобы задуматься об этом, говорили себе, что вы взрослый человек и у вас нет на это времени. Черски советует не отмахиваться от подобных вещей, а начинать как раз с них.

Если не хотите ждать, пока встретится что-то любопытное, положите изюм в газировку и посмотрите, что произойдёт. Понаблюдайте, как высыхает пролитый кофе. Постучите ложкой по краю чашки и прислушайтесь к звуку. В конце концов, попробуйте уронить бутерброд так, чтобы он не падал маслом вниз.

ОСНОВНЫЕ ЗАКОНЫ ФИЗИКИ

[ Механика | Термодинамика | Электричество | Оптика | Атомная физика ]

ЭНЕРГИИ СОХРАНЕНИЯ И ПРЕВРАЩЕНИЯ ЗАКОН - общий закон природы: энергия любой замкнутой системы при всех процессах, происходящих в системе, остается постоянной (сохраняется). Энергия может только превращаться из одной формы в другую и перераспределяться между частями системы. Для незамкнутой системы увеличение (уменьшение) ее энергии равно убыли (возрастанию) энергии взаимодействующих с ней тел и физических полей.

1. МЕХАНИКА

АРХИМЕДА ЗАКОН - закон гидро- и аэростатики: на тело, погруженное в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх, числено равная весу жидкости или газа, вытесненного телом, и приложенная в центре тяжести погруженной части тела. FA= gV, где r - плотность жидкости или газа, V - объем погруженной части тела. Иначе можно сформулировать так: тело, погруженное в жидкость или газ, теряет в своем весе столько, сколько весит вытесненная им жидкость (или газ). Тогда P= mg - FA Открыт др. гр. ученым Архимедом в 212г. до н.э. Является основой теории плавания тел.

ВСЕМИРНОГО ТЯГОТЕНИЯ ЗАКОН - закон тяготения Ньютона: все тела притягиваются друг к другу с силой прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними: , где M и m - массы взаимодействующих тел, R - расстояние между этими телами, G - гравитационная постоянная (в СИ G=6,67.10-11 Н.м2/кг2.

ГАЛИЛЕЯ ПРИНЦИП ОТНОСИТЕЛЬНОСТИ, механический принцип относительности - принцип классической механики: в любых инерциальных системах отсчета все механические явления протекают одинаково при одних и тех же условиях. Ср. относительности принцип.

ГУКА ЗАКОН - закон, согласно которому упругие деформации прямо пропорциональны вызывающим их внешним воздействиям.

ИМПУЛЬСА СОХРАНЕНИЯ ЗАКОН - закон механики: импульс любой замкнутой системы при всех процессах, происходящих в системе, остается постоянным (сохраняется) и может только перераспределяться между частями системы в результате их взаимодействия.

НЬЮТОНА ЗАКОНЫ - три закона, лежащие в основе ньютоновской классической механики. 1-й закон (закон инерции): материальная точка находится в состоянии прямолинейного и равномерного движения или покоя, если на нее не действуют другие тела или действие этих тел скомпенсировано. 2-й закон (основной закон динамики): ускорение, полученное телом, прямо пропорционально равнодействующей всех сил, действующих на тело, и обратно пропорционально массе тела (). 3-й закон: две материальные точки взаимодействуют друг с другом силами одной природы равными по величине и противоположными по направлению вдоль прямой, соединяющей эти точки ().

ОТНОСИТЕЛЬНОСТИ ПРИНЦИП - один из постулатов относительности теории, утверждающий, что в любых инерциальных системах отсчета все физические (механические, электромагнитные и др.) явления при одних и тех же условиях протекают одинаково. Является обобщением Галилея принципа относительности на все физические явления (кроме тяготения).

2. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

АВОГАДРО ЗАКОН - один из основных законов идеальных газов: в равных объемах различных газов при одинаковой температуре и давлении содержится одинаковое число молекул. Открыт в 1811 году итал. физиком А.Авогадро(1776-1856).

БОЙЛЯ-МАРИОТТА ЗАКОН - один из законов идеального газа: для данной массы данного газа при постоянной температуре произведение давления на объем есть величина постоянная. Формула: pV=const. Описывает изотермический процесс.

ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ - один из основных законов термодинамики, согласно которому невозможен периодический процесс единственным результатом которого является совершение работы, эквивалентной количеству теплоты, полученному от нагревателя. Другая формулировка: невозможен процесс, единственным результатом которого является передача энергии в форме теплоты от менее нагретого тела к более нагретому. В.з.т. выражает стремление системы, состоящей из большого количества хаотически движущихся частиц, к самопроизвольному переходу из состояний менее вероятных в состояния более вероятные. Запрещает создание вечного двигателя второго рода.

ГЕЙ-ЛЮССАКА ЗАКОН - газовый закон: для данной массы данного газа при постоянном давлении отношение объема к абсолютной температуре есть величина постоянная,где =1/273 К-1 - температурный коэффициент объемного расширения.

ДАЛЬТОНА ЗАКОН - один из основных газовых законов: давление смеси химически не взаимодействующих идеальных газов равно сумме парциальных давлений этих газов.

ПАСКАЛЯ ЗАКОН - основной закон гидростатики: давление, производимое внешними силами на поверхность жидкости или газа, передается одинаково по всем направлениям.

ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ - один из основных законов термодинамики, являющийся законом сохранения энергии для термодинамической системы: количество теплоты Q, сообщенное системе, расходуется на изменение внутренней энергии системы U и совершение системой работы A против внешних сил. Формула: Q= U+A. Лежит в основе работы тепловых машин.

ШАРЛЯ ЗАКОН - один из основных газовых законов: давление данной массы идеального газа при постоянном объеме прямо пропорционально температуре: где p0 - давление при 00С, =1/273,15 К-1 - температурный коэффициент давления.

3. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

АМПЕРА ЗАКОН - закон взаимодействия двух проводников с токами; параллельные проводники с токами одного направления притягиваются, а с токами противоположного направления - отталкиваются. А.з. называют также закон, определяющий силу, действующую в магнитном поле на малый отрезок проводника с током. Открыт в 1820г. А.-М. Ампером.

ДЖОУЛЯ-ЛЕНЦА ЗАКОН - закон, описывающий тепловое действие электрического тока. Согласно Д. - Л.з. количество теплоты, выделяющееся в проводнике при прохождении по нему постоянного тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения.

ЗАРЯДА СОХРАНЕНИЯ ЗАКОН - один из фундаментальных законов природы: алгебраическая сумма электрических зарядов любой электрически изолированной системы остается неизменной. В электрически изолированной системе З.с.з. допускает появление новых заряженных частиц (напр., при электролитической диссоциации, ионизации газов, рождении пар частица - античастица и др.), но суммарный электрический заряд появившихся частиц всегда должен быть равен нулю.

КУЛОНА ЗАКОН - основной закон электростатики, выражающий зависимость силы взаимодействия двух неподвижных точечных зарядов от расстояния между ними: два неподвижных точечных заряда взаимодействуют с силой прямо пропорциональной произведению величин этих зарядов и обратно пропорциональной квадрату расстояния между ними и диэлектрической проницаемости среды, в которой находятся заряды. В СИ имеет вид: . Величина числено равна силе, действующей между двумя точечными неподвижными зарядами по 1 Кл каждый, находящимися в вакууме на расстоянии 1 м друг от друга. К.з. является одним из экспериментальных обоснований электродинамики.

ЛЕВОЙ РУКИ ПРАВИЛО - правило, определяющее направление силы, которая действует на находящийся в магнитном поле проводник с током (или движущуюся заряженную частицу). Оно гласит: если левую руку расположить так, чтобы вытянутые пальцы показывали направление тока (скорости частицы), а силовые линии магнитного поля (линии магнитной индукции) входили в ладонь, то отставленный большой палец укажет направление силы, действующей на проводник (положительную частицу; в случае отрицательной частицы направление силы противоположно).

ЛЕНЦА ПРАВИЛО (ЗАКОН) - правило, определяющее направление индукционных токов, возникающих при электромагнитной индукции. Согласно Л.п. индукционный ток всегда имеет такое направление, что его собственный магнитный поток компенсирует изменения внешнего магнитного потока, вызвавшие этот ток. Л.п. - следствие закона сохранения энергии.

ОМА ЗАКОН - один из основных законов электрического тока: сила постоянного электрического тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению. Справедлив для металлических проводников и электролитов, температура которых поддерживается постоянной. В случае полной цепи формулируется следующим образом: сила постоянного электрического тока в цепи прямо пропорциональна эдс источника тока и обратно пропорциональна полному сопротивлению электрической цепи.

ПРАВОЙ РУКИ ПРАВИЛО - правило, определяющее 1) направление индукционного тока в проводнике, движущемся в магнитном поле: если ладонь правой руки расположить так, чтобы в нее входили линии магнитной индукции, а отогнутый большой палец направить по движению

Проводника, то четыре вытянутых пальца покажут направление индукционного тока; 2) направление линий магнитной индукции прямолинейного проводника с током: если большой палец правой руки расположить по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции.

ФАРАДЕЯ ЗАКОНЫ - основные законы электролиза. Первый Фарадея закон: масса вещества, выделившегося на электроде при прохождении электрического тока, прямо пропорциональна количеству электричества (заряду), прошедшему через электролит (m=kq=kIt). Второй Ф.з.: отношение масс различных веществ, претерпевающих химические превращения на электродах при прохождении одинаковых электрических зарядов через электролит равно отношению химических эквивалентов. Установлены в 1833-34 г. М. Фарадеем. Обобщенный закон электролиза имеет вид: , где M - молярная (атомная) масса, z - валентность, F - Фарадея постоянная. Ф.п. равна произведению элементарного электрического заряда на постоянную Авогадро. F=e.NA. Определяет заряд, прохождение которого через электролит приводит к выделению на электроде 1 моля одновалентного вещества. F=(96484,56 0,27) Кл./моль. Названа в честь М.Фарадея.

ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ ЗАКОН - закон, описывающий явление возникновения электрического поля при изменении магнитного (явление электромагнитной индукции): электродвижущая сила индукции прямо пропорциональна скорости изменения магнитного потока. Коэффициент пропорциональности определяется системой единиц, знак - Ленца правилом. Формула в СИ: , где Ф - изменение магнитного потока, а t - промежуток времени, в течение которого это изменение произошло. Открыт М. Фарадеем.

4. ОПТИКА

ГЮЙГЕНСА ПРИНЦИП - метод, позволяющий определить положение фронта волны в любой момент времени. Согласно г.п. все точки, через которые проходит фронт волны в момент времени t, являются источниками вторичных сферических волн, а искомое положение фронта волны в момент времени t t совпадает с поверхностью, огибающей все вторичные волны. Позволяет объяснить законы отражения и преломления света.

ГЮЙГЕНСА - ФРЕНЕЛЯ - ПРИНЦИП - приближенный метод решения задач о распространении волн. Г.-Ф. п. гласит: в любой точке, находящейся вне произвольной замкнутой поверхности, охватывающей точечный источник света, световая волна, возбуждаемая этим источником, может быть представлена как результат интерференции вторичных волн, излучаемых всеми точками указанной замкнутой поверхности. Позволяет решать простейшие задачи дифракции света.

ОТРАЖЕНИЯ ВОЛН ЗАКОН - луч падающий, луч отраженный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем угол падения равен углу преломления. Закон справедлив для зеркального отражения.

ПРЕЛОМЛЕНИЕ СВЕТА - изменение направления распространения света (электромагнитной волны) при переходе из одной среды в другую, отличающуюся от первой показателем преломления. Для преломления выполняется закон: луч падающий, луч преломленный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем для данных двух сред отношение синуса угла падения к синусу угла преломления есть величина постоянная, называемая относительным показателем преломления второй среды относительно первой.

ПРЯМОЛИНЕЙНОГО РАСПРОСТРАНЕНИЯ СВЕТА ЗАКОН - закон геометрической оптики, заключающийся в том, что в однородной среде свет распространяется прямолинейно. Объясняет, напр., образование тени и полутени.

6. АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА.

БОРА ПОСТУЛАТЫ - основные допущения, введенные без доказательства Н.Бором, и положенные в основу БОРА ТЕОРИИ: 1) Атомная система устойчива только в стационарных состояниях, которые соответствуют дискретной последовательности значений энергии атома. Каждое изменение этой энергии связано с полным переходом атома из одного стационарного состояния в другое. 2) Поглощение и излучение энергии атомом происходит по закону, согласно которому связанное с переходом излучение является монохроматическим и обладает частотой: h =Ei-Ek, где h -Планка постоянная, а Ei и Ek - энергии атома в стационарных состояния

    Давайте немного разберемся с этим. Говоря, что вы не можете выиграть, Сноу имел в виду то, что поскольку материя и энергия сохраняются, вы не можете получить одно, не потеряв второе (то есть E=mc²). Также это означает, что для работы двигателя вам нужно поставлять тепло, однако в отсутствии идеально замкнутой системы некоторое количество тепла неизбежно будет уходить в открытый мир, что приведет ко второму закону.

    Второй закон - убытки неизбежны - означает, что в связи с возрастающей энтропией, вы не можете вернуться к прежнему энергетическому состоянию. Энергия, сконцентрированная в одном месте, всегда будет стремиться к местам более низкой концентрации.

    Наконец, третий закон - вы не можете выйти из игры - относится , самой низкой теоретически возможной температуре - минус 273,15 градуса Цельсия. Когда система достигает абсолютного нуля, движение молекул останавливается, а значит энтропия достигнет самого низкого значения и не будет даже кинетической энергии. Но в реальном мире достичь абсолютного нуля невозможно - только очень близко к нему подойти.

    Сила Архимеда

    После того как древний грек Архимед открыл свой принцип плавучести, он якобы крикнул «Эврика!» (Нашел!) и побежал голышом по Сиракузам. Так гласит легенда. Открытие было вот настолько важным. Также легенда гласит, что Архимед обнаружил принцип, когда заметил, что вода в ванной поднимается при погружении в него тела.

    Согласно принципу плавучести Архимеда, сила, действующая на погруженный или частично погруженный объект, равна массе жидкости, которую смещает объект. Этот принцип имеет важнейшее значение в расчетах плотности, а также проектировании подлодок и других океанических судов.

    Эвoлюция и естественный отбор

    Теперь, когда мы установили некоторые из основных понятий о том, с чего началась Вселенная и как физические законы влияют на нашу повседневную жизнь, давайте обратим внимание на человеческую форму и выясним, как мы дошли до такого. По мнению большинства ученых, вся жизнь на Земле имеет общего предка. Но для того, чтобы образовалась такая огромная разница между всеми живыми организмами, некоторые из них должны были превратиться в отдельный вид.

    В общем смысле, эта дифференциация произошла в процессе эволюции. Популяции организмов и их черты прошли через такие механизмы, как мутации. Те, у кого черты были более выгодными для выживания, вроде коричневых лягушек, которые отлично маскируются в болоте, были естественным образом избраны для выживания. Вот откуда взял начало термин естественный отбор.

    Можно умножить две этих теории на много-много времени, и собственно это сделал Дарвин в 19 веке. Эволюция и естественный отбор объясняют огромное разнообразие жизни на Земле.

    Общая теория относительности Альберта Эйнштейна была и остается важнейшим открытием, которое навсегда изменила наш взгляд на вселенную. Главным прорывом Эйнштейна было заявление о том, что пространство и время не являются абсолютными, а гравитация - это не просто сила, приложенная к объекту или массе. Скорее гравитация связана с тем, что масса искривляет само пространство и время (пространство-время).

    Чтобы осмыслить это, представьте, что вы едете через всю Землю по прямой линии в восточном направлении, скажем, из северного полушария. Через некоторое время, если кто-то захочет точно определить ваше местоположение вы будете гораздо южнее и восточнее своего исходного положения. Это потому что Земля изогнута. Чтобы ехать прямо на восток, вам нужно учитывать форму Земли и ехать под углом немного на север. Сравните круглый шарик и лист бумаги.

    Пространство - это в значительной мере то же самое. К примеру, для пассажиров ракеты, летящей вокруг Земли, будет очевидно, что они летят по прямой в пространстве. Но на самом деле, пространство-время вокруг них изгибается под действием силы тяжести Земли, заставляя их одновременно двигаться вперед и оставаться на орбите Земли.

    Теория Эйнштейна оказала огромное влияние на будущее астрофизики и космологии. Она объяснила небольшую и неожиданную аномалию орбиты Меркурия, показала, как изгибается свет звезд и заложила теоретические основы для черных дыр.

    Принцип неопределенности Гейзенберга

    Расширение теории относительности Эйнштейна рассказало нам больше о том, как работает Вселенная, и помогло заложить основу для квантовой физики, что привело к совершенно неожиданному конфузу теоретической науки. В 1927 году осознание того, что все законы вселенной в определенном контексте являются гибкими, привело к ошеломительному открытию немецкого ученого Вернера Гейзенберга.

    Постулируя свой принцип неопределенности, Гейзенберг понял, что невозможно одновременно знать с высоким уровнем точности два свойства частицы. Вы можете знать положение электрона с высокой степенью точности, но не его импульс, и наоборот.

    Позже Нильс Бор сделал открытие, которое помогло объяснить принцип Гейзенберга. Бор выяснил, что электрон обладает качествами как частицы, так и волны. Концепция стала известна как корпускулярно-волновой дуализм и легла в основу квантовой физики. Поэтому, когда мы измеряем положение электрона, мы определяем его как частицу в определенной точке пространства с неопределенной длиной волны. Когда мы измеряем импульс, мы рассматриваем электрон как волну, а значит можем знать амплитуду ее длины, но не положение.

Выбор редакции
В.И. Бородин, ГНЦ ССП им. В.П. Сербского, Москва Введение Проблема побочных эффектов лекарственных средств была актуальной на...

Добрый день, друзья! Малосольные огурцы - хит огуречного сезона. Большую популярность быстрый малосольный рецепт в пакете завоевал за...

В Россию паштет пришел из Германии. В немецком языке это слово имеет значение «пирожок». И первоначально это был мясной фарш,...

Простое песочное тесто, кисло-сладкие сезонные фрукты и/или ягоды, шоколадный крем-ганаш — совершенно ничего сложного, а в результате...
Как приготовить филе минтая в фольге - вот что необходимо знать каждой хорошей хозяйке. Во-первых, экономно, во-вторых, просто и быстро,...
Салат «Обжорка «, приготовленный с мясом — по истине мужской салат. Он накормит любого обжору и насытит организм до отвала. Этот салат...
Такое сновидение означает основу жизни. Сонник пол толкует как знак жизненной ситуации, в которой ваша основа жизни может показывать...
Во сне приснилась крепкая и зеленая виноградная лоза, да еще и с пышными гроздьями ягод? В реале вас ждет бесконечное счастье во взаимной...
Первое мясо, которое нужно давать малышу для прикорма, это – крольчатина. При этом очень важно знать, как правильно варить кролика для...