Как делают орган музыкальный инструмент. Физические процессы в органных трубах


Алексей Надёжин: «Орга́н - самый большой и сложный музыкальный инструмент. Фактически, орган это целый духовой оркестр, а каждый из его регистров - отдельный музыкальный инструмент со своим звучанием.

В Светлановском зале Московского Международного Дома Музыки установлен самый большой орган в России. Мне посчастливилось увидеть его с той стороны, с которой его очень мало, кто видел.
Этот орган изготовлен в 2004 году в Германии консорциумом фирм Glatter Gotz и Klais, считающимися флагманами органостроения. Орган разрабатывался специально для Московского Международного Дома Музыки. У органа 84 регистра (в обычном органе количество регистров редко превышает 60) и более шести тысяч труб. Каждый регистр - отдельный музыкальный инструмент со своим звучанием.
Высота органа - 15 метров, вес - 30 тонн, стоимость - два с половиной миллиона евро.


О том, как устроен орган, мне рассказал доцент кафедры акустики МГУ Павел Николаевич Кравчун, являющийся главным смотрителем органов Московского международного Дома музыки и принимавший участие в разработке этого инструмента.


У органа пять клавиатур - четыре ручные и одна ножная. Удивительно, но ножная клавиатура вполне полноценна и некоторые простые произведения можно исполнять одними ногами. На каждом мануале (ручной клавиатуре) по 61 клавише. Справа и слева - ручки включения регистров.


Хоть орган и выглядит совершенно традиционным и аналоговым, на самом деле он частично управляется компьютером, который прежде всего запоминает пресеты - наборы регистров. Переключаются они кнопками на торцах мануалов.


Пресеты сохраняются на обычной 1.44″ дискете. Конечно, в компьютерной технике дисководы уже почти не используются, но тут он исправно работает.


Для меня было открытием узнать, что каждый органист является импровизатором, ведь в нотах или совсем не указывается набор регистров или указываются общие пожелания. Во всех органах общий только базовый набор регистров, а их количество и тональность могут сильно отличаться. Только лучшие исполнители могут быстро адаптироваться к огромному набору регистров органа Светлановского зала и использовать его возможности в полной мере.
Помимо ручек, у органа есть рычаги, переключаемые ногами и педали. Рычаги включают и отключают различные функции, управляемые компьютером. Например, объединение клавиатур и эффект нарастания, управляемый вращающейся педалью-роликом, по мере вращения которого подключаются дополнительные регистры и звук становится насыщенней и мощнее.
Для улучшения звучания органа (а заодно и других инструментов) в зале смонтирована электронная система Constellation, включающая множество микрофонов и миниколонок-мониторов на сцене, опускающихся с потолка на тросах с помощью моторов и множества микрофонов и колонок в зале. Это не система звукоусиления, при её включении звук в зале не становится громче, он становится равномернее (зрители на боковых и дальних местах начинают слышать музыку так же хорошо, как зрители в партере), кроме того может добавляться реверберация, улучшающая восприятие музыки.


Воздух, с помощью которого звучит орган, подаётся тремя мощными, но очень тихими вентиляторами.


Для равномерной его подачи используются… обычные кирпичи. Они прижимают меха. Когда вентиляторы включены, меха раздуваются, а вес кирпичей обеспечивает необходимое давление воздуха.


Воздух подаётся в орган по деревянным трубам. Удивительно, но большинство заслонок, заставляющих трубы звучать, управляются чисто механически - тягами, длина некоторых из которых превышает десять метров. Когда к клавиатуре подключено много регистров, органисту бывает очень нелегко продавить клавиши. Конечно же, в органе есть система электрического усиления, при включении которой клавиши нажимаются легко, но высококлассные органисты старой школы всегда играют без усиления - ведь только так можно менять интонации, изменяя скорость и силу нажатия клавиш. Без усиления орган - чисто аналоговый инструмент, с усилением - цифровой: каждая труба может только звучать или молчать.
Так выглядят тяги, идущие от клавиатур к трубам. Они деревянные, так как дерево наименее подвержено температурному расширению.


Внутрь органа можно зайти и даже пролезть по маленькой «пожарной» лестнице по его этажам. Внутри очень мало места, поэтому по фотографиям сложно ощутить масштабы конструкции, но всё же я попробую показать вам, то что увидел.


Трубы отличаются по высоте, толщине и форме.


Некоторые трубы деревянные, некоторые металлические из оловянно-свинцового сплава.


Перед каждым большим концертом орган настраивается заново. Процесс настройки занимает несколько часов. Для настройки концы самых маленьких труб немного развальцовываются или завальцовываются специальным инструментом, у труб побольше есть регулировочный стержень.


У больших труб есть вырезанный лепесток, который может немного откручиваться и закручиваться для настройки тона.


Самые большие трубы издают инфразвук от 8 Гц, самые маленькие - ультразвук.


Уникальной особенностью органа ММДМ является наличие горизонтальных труб, обращённых в зал.


Предыдущий кадр я сделал с маленького балкончика, на который можно выйти изнутри органа. Он служит для настройки горизонтальных труб. Вид зрительного зала с этого балкончика.


Небольшое количество труб имеет только электропривод.


А ещё у органа есть два звукоизобразительных регистра или «спецэффекта». Это «колокольчики» - звон семи колокольчиков подряд и «птички» - чириканье птичек, происходящее благодаря воздуху и дистиллированной воде. Павел Николаевич демонстрирует, как работают «колокольчики».


Удивительный и очень сложный инструмент! Система Constellation отправляется в режим парковки, а я на этом заканчиваю рассказ о самом большом музыкальном инструменте нашей страны.



Органные трубы

Звучащие трубы, употребляющиеся как музыкальные инструменты с самой глубокой древности, делятся на два рода: мундштуковые и язычковые трубы. Звучащее тело в них составляет главным образом воздух. Привести в колебание воздух, при чем в трубе образуются стоячие волны, можно различным образом. В мундштуковой или флейтовой трубе (см. фиг. 1) тон вызывается при вдувании струи воздуха (ртом или мехами) на заостренный край прореза в боковой стенке. Трение воздушной струи об этот край производит свист, который можно слышать, если отделить трубу от ее мундштука (embouchure). Пример - паровой свисток. Труба, служа резонатором, выделяет и усиливает соответствующий ее размерам один из многочисленных тонов, входящих в состав этого сложного свиста. В язычковой трубе стоячие волны образуются вдуванием воздуха через особое отверстие, прикрываемое упругой пластинкой (язычок, anche, Zunge), которая приходит при этом в колебание.

Язычковые трубы бывают трех родов: 1) трубы (О.), тон которых прямо обусловливается быстротой колебаний язычка; они служат только для усиления тона, издаваемого язычком (фиг. 2).

Их можно настраивать в небольших пределах, перемещая пружинку, надавливающую на язычок. 2) Трубы, в которых, напротив, установившиеся в них колебания воздуха определяют собой колебания легко податливого тростникового язычка (кларнет, гобой и фагот). Эта упругая, гибкая пластинка, периодически прерывая вдуваемую струю воздуха, вызывает колебания воздушного столба в трубе; эти же последние колебания регулируют в свою очередь соответственным себе образом колебания и самой пластинки. 3) Трубы с перепончатыми язычками, быстрота колебаний которых по желанию регулируется и изменяется в значительных пределах. В медных духовых инструментах роль такого язычка играют губы; при пении же - голосовые связки. Законы колебания воздуха в трубах с поперечным сечением настолько малым, что все точки сечения колеблются одинаково, установлены Даниилом Бернулли (D. Bernoulli, 1762). В открытых трубах у обоих ее концов образуются пучности, где подвижность воздуха наибольшая, а плотность постоянная. Если между этими двумя пучностями образуется один узел, то длина трубы будет равна половине длины, т. е. L = λ/2 ; этот случай соответствует самому низкому тону. При двух узлах в трубе поместится целая волна, L = 2 λ/2 = λ; при трех, L = 3λ/2; при n узлах, L = n λ/2. Чтобы найти высоту тона, т. е. число N колебаний в секунду, припомним, что длина волны (расстояние λ, на которое распространяется колебания в среде в то время T , когда одна частица совершает свое полное колебание) равняется произведению скорости ω распространения на период Т колебания, или λ = ωT; но T = l /N ; следовательно, λ = ω/N. Отсюда N = ω/λ, или, так как из предыдущего λ = 2L /n , N = n ω/2L . Эта формула показывает, что 1) открытая труба, при различной силе вдувания воздуха в нее, может издавать тоны, высоты которых относятся между собой, как 1:2:3:4...; 2) высота тона обратно пропорциональна длине трубы. В закрытой трубе около мундштука по-прежнему должна быть пучность, но на другом, закрытом конце ее, где продольные колебания воздуха невозможны, должен быть узел. Поэтому по длине трубы может поместиться 1/4 стоячей волны, что соответствует самому низкому или основному тону трубы или 3/4 волны, или вообще нечетное число четвертей волны, т. е. L = [(2n + 1)/4]λ; откуда N" = (2n + 1)ω/4L . Итак, в закрытой трубе последовательные тоны, издаваемые ею, или соответствующие им числа колебаний, относятся как ряд нечетных чисел 1:3:5; причем высота каждого из таких тонов обратно пропорциональна длине трубы. Основной тон в закрытой трубе, кроме того, октавой ниже, нежели в открытой трубе (в самом деле, при n = 1, N":N = 1:2). Все эти выводы теории легко поверяются на опыте. 1) Если взять длинную и узкую трубку с флейтовой амбушюрой (мундштуком) и вдувать в нее воздух под возрастающим давлением, то получится в открытой трубе ряд гармонических тонов, постепенно возвышающихся (причем не трудно достигнуть до 20 обертона). В трубе же закрытой получаются только нечетные гармонические тоны, причем основной, самый низкий тон октавой ниже, нежели таковой же в открытой трубе. Эти тоны могут существовать в трубе и одновременно, сопровождая основной тон или один из низших. 2) Положение узлов пучностей внутри трубы можно определять различным образом. Так Савар (Savart) для этой цели употребляет тонкую перепонку, натянутую на кольцо. Если насыпать на нее мелкого песка и опустить на нитях в трубу, одна стенка которой стеклянная, то в узловых местах песок останется неподвижным, а в остальных местах и в особенности в пучностях он будет заметно двигаться. Кроме того, так как в пучностях воздух остается при атмосферном давлении, то открыв в этом месте отверстие, сделанное в стенке трубы, мы не изменим тона; отверстие, открытое в другом месте, изменяет высоту звука. В узловых местах, напротив, давление и плотность воздуха меняются, но скорость равна нулю. Поэтому, если вдвинуть заслонку через стенку в том месте, где приходится узел, то высота звука не должна измениться. Опыт это действительно и оправдывает. Опытная проверка законов звучания труб может быть также произведена при посредстве манометрических огоньков Кёнига (см.). Если манометрическая коробка, закрытая со стороны трубы перепонкой, приходится около узла, то колебания газового пламени будут наибольшими; около пучностей пламя будет неподвижно. Наблюдать колебания таких огоньков можно посредством движущихся зеркал. Для этой цели, напр., употребляется зеркальный параллелепипед, приводимый во вращение помощью центробежной машины; в зеркалах при этом будет видна светлая полоса; один край которой будет представляться зазубренным. 3) Закон обратной пропорциональности высоты тона и длины трубы (длинной и узкой) был известен с давних пор и проверяется легко. Опыты показали, однако, что закон этот не вполне точен, в особенности для широких труб. Так Массон (1855) показал, что в длинной бернуллиевой, составной флейте при звуке, соответствующем полудлине волны в 0,138 м., воздушный столб разделяется действительно на такие именно части с длиной в 0,138 м., исключая той, которая прилегает к амбушюре, где длина оказалась всего 0,103 м. Также и Кениг нашел, напр., для одного частного случая расстояния между соответствующими пучностями в трубе (начиная с амбушюры) равными 173, 315, 320, 314, 316, 312, 309, 271. Здесь средние числа почти одинаковы, они мало отступают от среднего значения 314, тогда как 1-я из них (около амбушюры) отличается от среднего на 141, а последнее (у отверстия трубы) на 43. Причина таких неправильностей или пертурбарций на оконечностях трубы заключается для амбушюры в том, что упругость и плотность, вследствие вдувания воздуха, не остаются вполне постоянными, как это предполагается в теории для пучности, а для свободного отверстия открытой трубы, вследствие той же причины, колеблющийся воздушный столб как бы продолжается или выступает за края стенок наружу; последняя пучность поэтому будет приходиться уже вне трубы. И в закрытой трубе у заслонки, если она поддается сама колебаниям, должны происходить пертурбации. Вертгейм (1849-51) на опыте убедился, что пертурбации у концов трубы не зависят от длины волны. Пуассон (1817) впервые дал теорию таких пертурбаций, приняв, что малые сгущения воздуха пропорциональны скорости. Затем Гопкинс (1838) и Кэ (1855) дали более полные объяснения, приняв в расчет многократные отражения на оконечностях трубы. Общий результат этих исследований таков, что для открытой трубы, вместо равенства L = /2, надо взять L + l = /2 , a для закрытой трубы L + l" = (2n + 1 )λ /4. Следовательно, при расчете длина L трубы должна быть увеличена на постоянную величину (l или l" ). Самая полная и точная теория звучащих труб дана Гельмгольцем. Из этой теории вытекает, что поправка у отверстия равна 0,82 R (R - радиус сечения трубы) для случая узкой открытой трубы, сообщающейся отверстием с дном очень широкой трубы. По опытам Райлея (lord Rayleigh) такая поправка должна быть 0,6 R, если отверстие узкой трубы сообщается со свободным пространством и если длина волны весьма велика сравнительно с диаметром трубы. Бозанке (1877) нашел, что эта поправка увеличивается вместе с отношением диаметра к длине волны; так напр. она равна 0,64 при R /λ = 1/12 и 0,54 при R /λ = 1/20. Других результатов достиг из своих уже упомянутых опытов и Кёниг. Он заметил, именно, что укорочение первой полудлины волны (у амбушюры) становится меньше при высших тонах (т. е. при более коротких волнах); менее же значительное укорочение последней полуволны мало при этом изменяется. Кроме того, многочисленные опыты были произведены с целью исследовать амплитуды колебаний и давление воздуха внутри труб (Кундт - 1868, Теплер и Больцман - 1870, Mach - 1873). Несмотря, однако, на многочисленные опытные исследования, вопрос о звучащих трубах нельзя еще считать окончательно выясненным во всех отношениях. - Для широких труб, как уже сказано было, законы Бернулли совсем не применимы. Так Мерсенн (1636), взяв между прочим две трубы одинаковой длины (16 см.), но различных диаметров, заметил, что в более широкой трубке (d = 12 см.) тон был ниже на 7 целых тонов, нежели в трубе с меньшим поперечником (0,7 см.). Мерсенн же открыл закон, касающийся подобных труб. Савар подтвердил для труб самых разнообразных форм справедливость этого закона, который формулирует так: в подобных трубках высоты тонов обратно пропорциональны соответствующим размерам труб. Так напр. две трубы, из которых одна в 1 фт. длины и 22 лин. в диаметр, а другая 1/2 фт. длины и 11 лин. диаметра, дают два тона, составляющих октаву (число колебаний в 1" второй трубы в два раза более, нежели для 1-ой трубы). Савар (Savart, 1825) кроме того, нашел, что ширина прямоугольной трубы не оказывает влияния на высоту тона, если щель амбушюры идет во всю ширину. Кавалье-Колль (Cavaillé-Coll) дал следующие поправочные эмпирические формулы для открытых труб: 1) L" = L - 2p , причем р глубина прямоугольной трубы. 2) L" = L - 5/3d , где d диаметр круглой трубы. В этих формулах L = v"N есть теоретическая длина, а L" действительная длина трубы. Применимость формул Кавалье-Коль в значительных пределах доказана исследованиями Вертгейма. Рассмотренные законы и правила относятся к флейтовым или мундштуковым О. трубам. В язычковых трубах узел приходится у отверстия, периодически закрываемого и открываемого упругой пластинкой (язычком), тогда как в флейтовых трубах у отверстия, через которое вдувается струя воздуха, находится всегда пучность. Поэтому язычковая труба соответствует закрытой флейтовой трубе, у которой также на одном конце (хотя и на другом, чем у язычковой) приходится узел. Причина того, что узел находится у самого язычка трубы, заключается в том, что в этом месте происходят наибольшие изменения упругости воздуха, что и соответствует узлу (в пучностях, напротив, упругость постоянна). Итак, цилиндрическая язычковая труба (подобно закрытой флейтовой) может давать последовательный ряд тонов 1, 3, 5, 7...., если длина ее находится в надлежащем соотношении с быстротой колебания упругой пластинки. В широких трубах такое соотношение может и не строго соблюдаться, но за некоторым пределом несоответствия труба перестает звучать. Если язычок составляет металлическая пластинка, как в органной трубе, то высота тона обусловливается почти исключительно его колебаниями, как уже об этом говорилось. Но вообще высота тона зависит как от язычка, так и от самой трубы. В. Вебер (1828-29) подробно изучил эту зависимость. Если на язычок, открывающийся внутрь, как обыкновенно в О. трубах, наставить трубу, то тон вообще понижается. Если, постепенно удлиняя трубу, причем тон понизится на целую октаву (1:2), мы достигнем такой ее длины L , которая вполне соответствует колебаниям язычка, то тон сразу повысится до прежнего своего значения. При дальнейшем удлинении трубы до 2L тон снова станет понижаться до кварты (3:4); при 2L опять сразу получится первоначальный тон. При новом удлинении до 3L звук понизится на малую терцию (5:6) и т. д. (если устроить язычки, открывающиеся наружу, подобно голосовым связкам, то наставленная на них труба будет повышать соответствующий им тон). - В деревянных муз. инструментах (кларнете, гобое и фаготе) употребляются язычки; состоящие из одной или двух тонких и гибких тростинок. Эти язычки сами по себе издают гораздо более высокий звук, чем тот, который вызывается ими в трубе. Язычковые трубы надо рассматривать, как трубы закрытые со стороны язычка. Поэтому в цилиндрической трубе, как в кларнете, последовательных тонов при усиленном вдувании должно быть 1, 3, 5, и т. д. Открывание же боковых отверстий соответствует укорочению трубы. В конических трубах, закрытых у вершины, последовательность тонов такая же, как и у открытых цилиндрических труб, т. е. 1, 2, 3, 4 и т. д. (Гельмгольц). Гобой и фагот принадлежат к коническим трубам. Свойства язычков третьего рода, перепончатых, можно изучать, как это делал Гельмгольц, при посредстве простого прибора, состоящего из двух резиновых перепонок, натянутых на срезанные вкось края деревянной трубки, так чтобы между перепонками посреди трубы оставалась узкая щель. Ток воздуха можно направить через щель снаружи внутрь трубки или обратно. В последнем случае получается подобие голосовым связкам или губам при игре на медных духовых инструментах. Высота звука при этом обусловливается, вследствие мягкости и гибкости перепонок, исключительно размерами трубы. Медные инструменты, как охотничий рог, корнет с пистонами, валторна и др. представляют конические трубы, а потому они дают естественный ряд высших гармонических тонов (1, 2, 3, 4 и т. д.). Устройство органа - см. Орган.

Н. Гезехус.


Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. - С.-Пб.: Брокгауз-Ефрон . 1890-1907 .

Смотреть что такое "Органные трубы" в других словарях:

    Звучащие трубы, употребляющиеся как музыкальные инструменты с самой глубокой древности, делятся на два рода: мундштуковые и язычковые трубы. Звучащее тело в них составляет главным образом воздух. Привести в колебание воздух, при чем в трубе… …

    - (лат. Organum, от греч. organon орудие, инструмент; итал. organo, англ. organ, франц. orgue, нем. Orgel) клавишно духовой муз. инструмент сложного устройства. Типы О. многообразны: от переносных, небольших (см. Портатив, Позитив) до… … Музыкальная энциклопедия

    Клавишно духовой музыкальный инструмент, самый большой и сложный из существующих инструментов. Огромный современный орган состоит как бы из трех и более органов, причем исполнитель может управлять одновременно всеми. Каждый из органов, входящих в … Энциклопедия Кольера

    Число колебаний в единицу времени, быстрота или частота колебаний, зависит от размеров, формы и природы тел. Высота звука, обуславливаемая числом колебаний звучащего тела в единицу времени, может быть определена различными способами (см. Звук).… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (физ.) содействие или противодействие двух или большего числа волн, происходящих от колебательных, периодически повторяющихся движений. Волны (см.) могут происходить в жидкостях, твердых телах, газах и эфире. В первом случае И. волн видима… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Ни один музыкальный инструмент не может сравниться с органом по силе, тембру, диапазону, тональности и величественности звучания. Подобно многим музыкальным инструментам, устройство органа постоянно совершенствовалось благодаря усилиям многих поколений искусных мастеров, медленно накапливавших опыт и знания. К концу XVII в. орган в основном приобрел свою современную форму. Два наиболее выдающихся физика XIX в. Герман фон Гельмгольц и лорд Рэлей выдвинули противоположные теории, объясняющие основной механизм образования звуков в органных трубах, но из-за отсутствия необходимых приборов и инструментов их спор так и не был решен.

С появлением осциллографов и других современных приборов стало возможным детальное изучение механизма действия органа. Оказалось, что как теория Гельмгольца, так и теория Рэлея справедливы для определенных величин давления, под которым воздух нагнетается в органную трубу.


Далее в статье будут изложены результаты исследований, которые во многом не совпадают с объяснением механизма действия органа, приводимым в учебниках. Трубки, вырезанные из камыша или других растений с полым стеблем, были, вероятно, первыми духовыми музыкальными инструментами. Они издают звуки, если дуть поперек открытого конца трубки, или дуть в трубку, вибрируя губами, или, защемив конец трубки, вдувать воздух, заставляя вибрировать ее стенки. Развитие этих трех видов простейших духовых инструментов привело к созданию современной флейты, трубы и кларнета, из которых музыкант может извлекать звуки в довольно большом диапазоне частот. Параллельно создавались и такие инструменты, в которых каждая трубка предназначалась для звучания на одной определенной ноте.


Простейший из таких инструментов - это свирель (или «флейта Пана»), которая обычно имеет около 20 трубок различной длины, закрытых с одного конца и издающих звуки, если дуть поперек другого, открытого конца.


Самым большим и сложным инструментом этого типа является орган, содержащий до 10 000 труб, которыми органист управляет при помощи сложной системы механических передач.
Орган ведет свое происхождение из глубокой древности. Глиняные фигурки, изображавшие музыкантов, играющих на инструменте из многих труб, снабженных мехами, были изготовлены в Александрии еще во II в. до н.э. К X в. орган начинает использоваться в христианских церквях, и в Европе появляются написанные монахами трактаты об устройстве органов. По преданию, большой орган, построенный в X в. для Винчестерского собора в Англии, имел 400 металлических труб, 26 мехов и две клавиатуры с 40 клавишами, где каждая клавиша управляла десятью трубами.


На протяжении последующих столетий устройство органа совершенствовалось в механическом и музыкальном отношении, и уже в 1429 г. в Амьенском соборе был построен орган, имевший 2500 труб. В Германии к концу XVII в. органы уже приобрели свою современную форму. Термины, применяемые для описания устройства органа, отражают их происхождение от трубчатых духовых инструментов, в которые воздух вдувался ртом. Трубы органа сверху открыты, а снизу имеют суженную конусообразную форму. Поперек сплющенной части, над конусом, проходит «ротик» трубы (разрез). Внутри трубы помещен «язычок» (горизонтальное ребро), так что между ним и нижней «губой» образуется «лабиальное отверстие» (узкая щель). Воздух нагнетается в трубу большими мехами и поступает в ее конусообразное основание под давлением от 500 до 1000 паскалей (от 5 до 10 см.вод.ст.). Когда при нажатии соответствующей педали и клавиши воздух входит в трубу, он устремляется вверх, образуя при выходе из лабиальной щели широкую плоскую струю. Струя воздуха проходит поперек прорези «ротика» и, ударяясь о верхнюю губу, взаимодействует с воздушным столбом в самой трубе; в результате создаются устойчивые колебания, которые и заставляют трубу «говорить».


При строительстве органа особое внимание уделяется тому, чтобы воздушные потоки в трубах были полностью турбулентны, что достигается с помощью мелких нарезок по кромке язычка. Как ни удивительно, в отличие от ламинарного турбулентный поток устойчив и может быть воспроизведен. Полностью турбулентный поток постепенно смешивается с окружающим воздухом.Процесс расширения и замедления при этом сравнительно несложен. Кривая, изображающая изменение скорости потока в зависимости от расстояния от центральной плоскости его сечения, имеет вид перевернутой параболы, вершина которой соответствует максимальному значению скорости. Ширина потока возрастает пропорционально расстоянию от лабиальной щели. Кинетическая энергия потока остается неизменной, поэтому уменьшение его скорости пропорционально корню квадратному из расстояния от щели. Эта зависимость подтверждается как расчетами, так и результатами эксперимента (при учете небольшой области перехода вблизи лабиальной щели). В уже возбужденной и звучащей органной трубе воздушный поток попадает из лабиальной щели в интенсивное звуковое поле в прорези трубы. Движение воздуха, связанное с генерацией звуков, направлено через прорезь и, следовательно, перпендикулярно плоскости потока.


В XIX и начале XX в. строились большие органы со всевозможными электромеханическими и электропневматическими устройствами, но в последнее время предпочтение опять отдается механическим передачам от клавиш и педалей, а сложные электронные устройства используются для одновременного включения сочетаний регистров во время игры на органе. Клавишное управление осуществляется механическим способом, но оно дублируется электрической передачей, к которой можно подключаться. Благодаря этому исполнение органиста может быть записано в кодированной цифровой форме, которую затем можно использовать для автоматического воспроизведения на органе первоначального исполнения. Управление регистрами и их сочетаниями осуществляется с помощью электрических или электропневматических устройств и микропроцессоров с памятью, что позволяет широко варьировать управляющую программу. Таким образом, великолепное богатое звучание величественного органа создается сочетанием самых передовых достижений современной техники и традиционных приемов и принципов, которые на протяжении многих столетий использовались мастерами прошлого.
http://planete-zemlya.r

Орган - музыкальный инструмент, который называют «королём музыки». Грандиозность его звучания выражается в эмоциональном воздействии на слушателя, не имеющем равных. Кроме того, самый большой в мире музыкальный инструмент - орган, и у него самая совершенная система управления. Его высота и длина приравниваются к размеру стены от фундамента до крыши в большом здании - храме или концертном зале.

Выразительный ресурс органа позволяет создавать для него музыку широчайшего объёма содержания: от размышлений о Боге и космосе до тонких интимных отражений человеческой души.

Орган - музыкальный инструмент с уникальной по своей продолжительности историей. Его возраст - около 28 веков. В рамках одной статьи невозможно проследить великий путь этого инструмента в искусстве. Мы ограничились коротким очерком генезиса органа с древнейших времён до тех столетий, когда он приобрёл вид и свойства, известные по сей день.

Историческим предшественником органа является дошедший до нас инструмент флейта Пана (по имени сотворившего её, как упомянуто в мифе). Появление флейты Пана датировано 7 веком до н.э., но реальный возраст, вероятно, гораздо больше.

Так называется музыкальный инструмент, состоящий из вертикально поставленных рядом тростниковых трубочек разной длины. Боковыми поверхностями они прилегают друг к другу, а поперёк объединены пояском из крепкой материи или деревянной планкой. Исполнитель вдувает воздух сверху через отверстия трубочек, и они звучат - каждая на своей высоте. Настоящий умелец игры может использовать сразу две или даже три трубочки для извлечения одновременного звучания и получить двухголосный интервал или, при особом мастерстве, трёхголосный аккорд.

Флейта Пана олицетворяет собой извечное стремление человека к изобретательству, особенно в искусстве, и желание совершенствовать выразительные возможности музыки. До того, как этот инструмент появился на исторической сцене, в распоряжении древнейших музыкантов были более примитивные продольные флейты - простейшие дудочки с отверстиями для пальцев. Их технические возможности были невелики. На продольной флейте невозможно одновременное извлечение двух и более звуков.

В пользу более совершенного звучания флейты Пана говорит также следующий факт. Способ вдувания воздуха в неё - бесконтактный, воздушная струя подаётся губами с некоторого расстояния, что создаёт особый тембровый эффект мистического звучания. Все предшественники органа были духовыми, т.е. использовали управляемую живую силу дыхания для создания Впоследствии эти особенности - многоголосие и призрачно-фантастический «дышащий» тембр - были унаследованы в звуковой палитре органа. Именно они лежат в основе уникальной способности органного звука - вводить слушателя в транс.

От появления флейты Пана до изобретения следующего предшественника органа прошло пять столетий. За это время знатоки духового звукоизвлечения нашли способ, позволяющий бесконечно увеличить ограниченное время человеческого выдоха.

В новом инструменте подача воздуха осуществлялась с помощью кожаных мехов - наподобие тех, которыми пользовался кузнец для нагнетания воздуха.

Появилась также возможность автоматически поддерживать двухголосие и трёхголосие. Один или два голоса - нижние - без перерыва тянули звуки, высота которых не менялась. Эти звуки, называемые «бурдонами» или «фобурдонами», извлекались без участия голоса, непосредственно из мехов через открытые в них отверстия и были чем-то вроде фона. Позднее они получат название «органного пункта».

Первый голос, благодаря уже известному способу закрывания дырочек на отдельной «флейтообразной» вставке в мехи, получил возможность играть достаточно разнообразные и даже виртуозные мелодии. Во вставку исполнитель вдувал воздух губами. В отличие от бурдонов, мелодия извлекалась контактным способом. Поэтому в ней отсутствовал налёт мистики - его взяли на себя бурдонные подголоски.

Этот инструмент приобрёл большую популярность, особенно в народном творчестве, а также среди странствующих музыкантов, и стал называться волынкой. Благодаря её изобретению будущий органный звук приобрёл практически неограниченную протяжность. Пока исполнитель накачивает воздух мехами, звук не прерывается.

Таким образом, проявились три из четырёх будущих звуковых свойств «короля инструментов»: многоголосие, мистическая уникальность тембра и абсолютная протяжность.

Начиная со 2 века до н.э. появляются конструкции, которые всё более приближаются к образу органа. Для нагнетания воздуха греческий изобретатель Ктесебий создаёт гидравлический привод Это позволяет увеличить мощность звука и снабдить нарождающийся колосс-инструмент довольно длинными звучащими трубами. На слух гидравлический орган становится громким и резким. С такими свойствами звука он широко используется в массовых представлениях (ипподромные скачки, цирковые шоу, мистерии) у греков и римлян. С появлением раннего христианства вновь вернулась идея нагнетания воздуха мехами: звук от этого механизма был более живым и «человечным».

Фактически, на этом этапе можно считать сформированными основные особенности органного звука: многоголосная фактура, властно притягивающий внимание тембр, беспрецедентная протяжность и особая мощность, пригодная для привлечения большой массы людей.

Следующие 7 столетий были для органа определяющими в том смысле, что его возможностями заинтересовалась, а затем прочно «присвоила» их и развивала христианская церковь. Органу было суждено стать инструментом массовой проповеди, каким он остаётся вплоть до наших дней. С этой целью его преобразования двигались по двум руслам.

Первое. Физические размеры и акустические способности инструмента достигли невероятных величин. В соответствии с ростом и развитием храмовой архитектуры бурно прогрессировал аспект архитектурно-музыкальный. Орган стали встраивать в стену храма, и его громоподобное звучание подчиняло и потрясало воображение прихожан.

Количество органных труб, которые теперь делали из дерева и металла, достигло нескольких тысяч. Тембры органа обрели широчайший эмоциональный диапазон - от подобия Гласа Божия до тихих откровений религиозной индивидуальности.

Возможности звучания, ранее приобретённые на историческом пути, понадобились в церковном обиходе. Многоголосие органа позволяло усложняющейся музыке отражать многогранные переплетения духовной практики. Протяжность и нагнетаемость тона возвеличили аспект живого дыхания, приблизивший саму природу органного звука к переживаниям уделов человеческой жизни.

С этого этапа орган - музыкальный инструмент огромной убеждающей силы.

Второе направление в развитии инструмента шло по пути усиления его виртуозных возможностей.

Для управления тысячным арсеналом труб нужен был принципиально новый механизм, дающий возможность исполнителю справиться с этим несметным богатством. История сама подсказала нужное решение: появились Идею клавиатурной координации всего массива звучания великолепно адаптировали к устройству «короля музыки». Отныне орган - инструмент клавишно-духовой.

Управление гигантом сосредоточилось за специальным пультом, объединившем в себе колоссальные возможности клавирной техники и гениальные изобретения органных мастеров. Перед органистом теперь располагались в ступенчатом порядке - одна над другой - от двух до семи клавиатур. Внизу, у самого пола под ногами стояла большая педальная клавиатура для извлечения низких тонов. На ней играли ногами. Таким образом, техника органиста требовала большого мастерства. Посадочным местом исполнителя была длинная скамья, поставленная сверху над педальной клавиатурой.

Объединением труб управлял регистровый механизм. Около клавиатур находились специальные кнопки или рукоятки, каждая из которых приводила в действие одновременно десятки, сотни и даже тысячи труб. Чтобы органист не отвлекался на переключение регистров, у него появился помощник - обычно ученик, который должен был разбираться в основах игры на органе.

Орган начинает победное шествие в мировой художественной культуре. К 17 веку он достиг расцвета и небывалых высот в музыке. После увековечения органного искусства в творчестве Иоганна Себастьяна Баха величие этого инструмента остаётся непревзойдённым до наших дней. Сегодня орган - музыкальный инструмент новейшей истории.

Орган – это клавишно-духовой музыкальный инструмент. Орган считается царем музыкальных инструментов. Трудно найти такой же огромный, сложный, богатый звуковыми красками инструмент.

Орган является одним из древнейших инструментов. Его предками считаются волынка и деревянная флейта Пана. В старейших летописях Греции третьего века до нашей эры есть упоминая о водном органе – гидравлосе. Водным он называется потому, что воздух в него подавался в трубы с помощью водяного насоса. Он мог издавать необычайно громкие, пронзительные звуки, поэтому его использовали греки и римляне на скачках, во время цирковых представлений, одним словом, там, где собиралось большое количество людей.

Уже в первые века нашей эры водяной насос сменили кожаные меха, которые нагнетали воздух в трубы. В 7 веке нашей эры по разрешению Папы Римского Виталиана органы начали использовать для богослужений в католической церкви. Но играли на них только в определенные праздники, так как звучал орган очень громко и звук его не был мягким. Спустя 500 лет органы начали распространяться по всей Европе. Изменился и внешний вид инструмента: стало больше труб, появилась клавиатура (раньше клавиши заменяли широкие деревянные пластины).

В 17 и 18 веках органы строились практически во всех крупных соборах Европы. Композиторы создали огромное количество произведений для этого инструмента. Помимо духовной музыки для органа начали писать целые концерты светской музыки. Органы стали усовершенствовать.

Вершиной «органостроения» стал инструмент с 33 112 трубами и семью клавиатурами. Такой орган был построен в Америке в Атлантик-Сити, но играть на нем было очень сложно, поэтому он остался единственным в своем роде «королем органов», больше никто не пытался построить такой большой инструмент.

Процесс появления звука в органе очень сложен. На кафедре органа располагаются клавиатуры двух типов: ручные (их от 1 до 5) и ножная. Кроме клавиатур, на кафедре есть регистровые рукоятки, при помощи которых музыкант выбирает тембр звуков. Воздушный насос нагнетает воздух, педали открывают клапана определенного блока труб, а клавиши открывают клапана отдельных труб.

Трубы органа делятся на язычковые и лабиальные. Воздух проходит через трубу, заставляя колебаться язычок – таким образом возникает звук. В лабиальных трубах звук возникает потому, что под напором воздух проходит через отверстия в верхней и нижней части трубы. Сами трубы изготавливают из металла (свинца, олова, меди) или из дерева. Органная труба может издавать звук только определенной высоты, тембра и силы. Трубы объединяются в ряды, которые называются регистрами. Среднее количество труб в органе – 10 000.

Нужно заметить, что трубы, в сплаве которых большое количество свинца, со временем деформируются. Из-за этого звучание органа становится хуже. Такие трубы имеют, как правило, голубой оттенок.

Качество звучание зависит от присадок, которые добавлены в сплав труб органа. Это сурьма, серебро, медь, латунь, цинк.

Трубы органа имеют разную форму. Они бывают открытыми и закрытыми. Открытые трубы позволяют извлекать громкий звук, закрытые звук приглушают. Если труба расширяется кверху, то звук будет чистым и открытым, а если сужается, то звук сжатый и таинственный. На качество звука влияет и диаметр труб. Трубы с небольшим диаметром издают напряженные звуки, трубы с большим диаметром – открытые и мягкие звуки.

Выбор редакции
По указу Президента, наступающий 2017 год будет годом экологии, а также особо охраняемых природных объектов. Подобное решение было...

Обзорывнешней торговли России Торговля между Россией и КНДР (Северной Кореей) в 2017 г. Подготовлен сайтом Внешняя Торговля России на...

Уроки № 15-16 ОБЩЕСТВОЗНАНИЕ 11 класс Учитель обществознания Касторенской средней общеобразовательной школы № 1 Данилов В. Н. Ф инансы...

1 слайд 2 слайд План урока Введение Банковская система Финансовые институты Инфляция: виды, причины и последствия Заключение 3...
Иногда некоторым из нас приходится слышать о такой национальности, как аварец. Что за нация - аварцы?Это коренное проживающее в восточной...
Артриты, артрозы и прочие заболевания суставов для большинства людей, особенно в пожилом возрасте, являются самой настоящей проблемой. Их...
Территориальные единичные расценкина строительные и специальные строительные работы ТЕР-2001, предназначены для применения при...
Против политики «военного коммунизма» с оружием в ру-ках поднялись красноармейцы Кронштадта - крупнейшей военно-мор-ской базы Балтийского...
Даосская оздоровительная системаДаосскую оздоровительную систему создавало не одно поколение мудрецов, которые тщательнейшим образом...