Проявления солнечной активности на земле. Активность солнца


Солнечная активность – это совокупность явлений, периодически возникающих в солнечной атмосфере. Проявления солнечной активности связаны с магнитными свойствами солнечной плазмы.

Что же вызывает возникновение солнечной активности? Постепенно увеличивается магнитный поток в одной из областей фотосферы. Затем здесь увеличивается яркость в линиях водорода и кальция. Такие области называются флоккулами .

Примерно в тех же участках на Солнце в фотосфере (т.е. несколько глубже) при этом также наблюдается увеличение яркости в белом (видимом) свете. Это явление называется факелами .

Увеличение энергии, выделяющееся в области факела и флоккула – следствие увеличившейся напряженности магнитного поля.
Через 1-2 дня после появления флоккула в активной области возникают солнечные пятна в виде маленьких черных точек – пор. Многие из них вскоре исчезают, лишь отдельные поры за 2-3 дня превращаются в крупные темные образования. Типичное солнечное пятно имеет размеры в несколько десятков тысяч километров и состоит из темной центральной части (тени) и волокнистой полутени.

Из истории изучения солнечных пятен

Первые сообщения о пятнах на Солнце относятся к наблюдениям 800 г. до н. э. в Китае, первые рисунки относятся к 1128 г. В 1610 г. астрономы начали использовать телескоп для наблюдения Солнца. Первоначальные исследования касались в основном природы пятен и их поведения. Но, несмотря на исследования, физическая природа пятен оставалась неясной до XX века. К XIX веку уже имелся достаточно продолжительный ряд наблюдений числа пятен, чтобы определить периодические циклы в активности Солнца. В 1845 г. профессора Д. Генри и С. Александер из Принстонского университета наблюдали Солнце с помощью термометра и определили, что пятна излучают меньше радиации по сравнению с окружающими областями Солнца. Позже было определено излучение выше среднего в областях факелов.

Характеристика солнечных пятен

Самая главная особенность пятен – наличие в них сильных магнитных полей , достигающих наибольшей напряженности в области тени. Представьте себе выходящую в фотосферу трубку силовых линий магнитного поля. Верхняя часть трубки расширяется, и силовые линии в ней расходятся, как колосья в снопе. Поэтому вокруг тени магнитные силовые линии принимают направление, близкое к горизонтальному. Магнитное поле как бы расширяет пятно изнутри и подавляет конвективные движения газа, переносящие энергию из глубины вверх. Поэтому в области пятна температура оказывается меньше примерно на 1000 К. Пятно является как бы охлажденной и скованной магнитным полем ямой в солнечной фотосфере.
Чаще всего пятна возникают целыми группами, но в них выделяются два больших пятна. Одно, небольшое, - на западе, а другое, поменьше, - на востоке. Вокруг них и между ними часто бывает множество мелких пятен. Такая группа пятен называется биполярной, потому что у больших пятен всегда противоположная полярность магнитного поля. Они как бы связаны с одной и той же трубкой силовых линий магнитного поля, которая в виде гигантской петли вынырнула из-под фотосферы, оставив концы где-то в глубоких слоях, увидеть их невозможно. Пятно, из которого выходит магнитное поле из фотосферы, имеет северную полярность, а то, в которое силовое поле входит обратно под фотосферу – южную.

Солнечные вспышки – самое мощное проявление солнечной активности. Они происходят в сравнительно небольших областях хромосферы и короны, расположенных над группами солнечных пятен. Проще говоря, вспышки – это взрыв, вызванный внезапным сжатием солнечной плазмы . Сжатие происходит под давлением магнитного поля и приводит к образованию длинного плазменного жгута в десятки и даже сотни тысяч километров. Количество энергии взрыва – от 10²³ Дж. Источник энергии вспышек отличается от источника энергии всего Солнца. Ясно, что вспышки имеют электромагнитную природу. Энергия, излучаемая вспышкой в коротковолновой области спектра, состоит из ультрафиолетовых и рентгеновских лучей.
Как и всякий сильный взрыв, вспышка порождает ударную волну, которая распространяется вверх в корону и вдоль поверхностных слоев солнечной атмосферы. Излучение солнечных вспышек оказывает особенно сильное воздействие на верхние слои земной атмосферы и ионосферу. В результате этого происходит целый комплекс геофизических явлений на Земле.

Протуберанцы

Наиболее грандиозными образованиями в солнечной атмосфере являются протуберанцы . Это плотные облака газов, возникающие в солнечной короне или выбрасываемые в нее из хромосферы. Типичный протуберанец имеет вид гигантской светящейся арки, опирающейся на хромосферу и образованной струями и потоками более плотного, чем корона, вещества. Температура протуберанцев около 20 000 К. Некоторые из них существуют в короне несколько месяцев, другие, появляющиеся рядом с пятнами, быстро движутся со скоростями около 100 км/с и существуют несколько недель. Отдельные протуберанцы движутся с еще большими скоростями и внезапно взрываются; они называются эруптивными. Размеры протуберанцев могут быть разными. Типичный протуберанец имеет высоту около 40 000 км и ширину около 200 000 км.
Имеется множество типов протуберанцев. На фотографиях хромосферы в красной спектральной линии водорода протуберанцы хорошо видны на диске Солнца в виде темных длинных волокон.

Области на Солнце, в которых наблюдаются интенсивные проявления солнечной активности, называются центрами солнечной активности. Общая активность Солнца периодически меняется. Существует множество способов оценивать уровень солнечной активности. Индекс солнечной активности – числа Вольфа W. W= k (f+10g), где k – коэффициент, учитывающий качество инструмента и производимых с его помощью наблюдений, f – полное число пятен, наблюдаемых в данный момент на Солнце, g – удесятеренное число групп, которые они образуют.
Эпоху, когда количество центров активности наибольшее, считают максимумом солнечной активности. А когда их совсем или почти нет – минимумом. Максимумы и минимумы чередуются в среднем с периодом 11 лет – одиннадцатилетний цикл солнечной активности.

Влияние солнечной активности на жизнь на Земле

Влияние это очень велико. Первым это влияние начал исследовать А.Л.Чижевский в июне 1915 г. Северные полярные сияния наблюдались в России и даже в Северной Америке, а «магнитные бури непрерывно нарушали движение телеграмм». В этот период ученый обращает внимание на то, что повышенная солнечная активность совпадает с кровопролитием на Земле. И действительно, сразу после появления больших пятен на Солнце на многих фронтах Первой мировой усилились военные действия. Он посвятил этим исследованиям всю свою жизнь, но его книга «В ритме Солнца» осталась недописанной и вышла только в 1969 г., через 4 года после смерти Чижевского. Он обратил внимание на связь между увеличением солнечной активности и земными катаклизмами.
Поворачиваясь к Солнцу то одним, то другим своим полушарием, Земля получает энергию. Этот поток можно представить в виде бегущей волны: там, где падает свет - ее гребень, где темно – провал: энергия то прибывает, то убывает.
Магнитные поля и потоки частиц, которые идут от солнечных пятен, достигают Земли и влияют на мозг, сердечно-сосудистую и кровеносную системы человека, на его физическое, нервное и психологическое состояние. Высокий уровень солнечной активности, его быстрые изменения возбуждают человека.

Сейчас влияние солнечной активности на Землю изучается очень активно. Появились новые науки - гелиобиология, солнечно-земная физика, - которые исследуют взаимосвязь жизни на Земле, погоды, климата с проявлениями солнечной активности.
Астрономы говорят, что Солнце становится все более ярким и жарким. Это связано с тем, что за последние 90 лет активность его магнитного поля увеличилась более чем вдвое, причем наибольший рост произошел за последние 30 лет. Сейчас ученые могут предсказывать солнечные вспышки, что дает возможность заблаговременно подготовиться к возможным сбоям в работе радио- и электросетей.

Сильная солнечная активность может привести к тому, что на Земле выйдут из строя линии электропередач, изменятся орбиты спутников, которые обеспечивают работу систем связи, "направляют" самолеты и океанские лайнеры. Солнечное "буйство" обычно характеризуется мощными вспышками и появлением множества пятен. Чижевский установил, что в период повышенной солнечной активности (большого количества пятен на Солнце) на Земле происходят войны, революции, стихийные бедствия, катастрофы, эпидемии, увеличивается интенсивность роста бактерий («эффект Чижевского - Вельховера»). Вот что он пишет в своей книге «Земное эхо солнечных бурь»: «Бесконечно велико количество и бесконечно разнообразно качество физико-химических факторов окружающей нас со всех сторон среды - природы. Мощные взаимодействующие силы исходят из космического пространства. Солнце, Луна, планеты и бесконечное число небесных тел связаны с Землею невидимыми узами. Движение Земли управляется силами тяготения, которые вызывают в воздушной, жидкой и твердой оболочках нашей планеты ряд деформаций, заставляют их пульсировать, производят приливы. Положение планет в солнечной системе влияет на распределение и напряженность электрических и магнитных сил Земли.
Но наибольшее влияние на физическую и органическую жизнь Земли оказывают радиации, направляющиеся к Земле со всех сторон Вселенной. Они связывают наружные части Земли непосредственно с космической средой, роднят ее с нею, постоянно взаимодействуют с нею, а потому и наружный лик Земли, и жизнь, наполняющая его, являются результатом творческого воздействия космических сил. А потому и строение земной оболочки, ее физико-химия и биосфера являются проявлением строения и механики Вселенной, а не случайной игрой местных сил. Наука бесконечно широко раздвигает границы нашего непосредственного восприятия природы и нашего мироощущения. Не Земля, а космические просторы становятся нашей родиной, и мы начинаем ощущать во всем ее подлинном величии значительность для всего земного бытия и перемещения отдаленных небесных тел, и движения их посланников - радиации...»
В 1980 году появилась методика, позволяющая обнаруживать наличие пятен в фотосферах других звезд. Оказалось, что у многих звезд спектрального класса G и К есть пятна, сходные с солнечными, с магнитным полем того же порядка. Зарегистрированы и изучаются циклы активности таких звезд. Они близки к солнечному циклу и составляют 5 - 10 лет.

Существуют гипотезы о влиянии изменений физических параметров Солнца на климат Земли.

Земные полярные сияния являются видимым результатом взаимодействия солнечного ветра, солнечной и земной магнитосфер и атмосферы. Экстремальные явления, связанные с солнечной активностью, приводят к значительным возмущениям магнитного поля Земли, что становится причиной геомагнитных бурь. Геомагнитные бури являются одним из важнейших элементов космической погоды и влияют на многие области деятельности человека, из которых можно выделить нарушение связи, систем навигации космических кораблей, возникновения вихревых индукционных токов в трансформаторах и трубопроводах и даже разрушение энергетических систем.
Магнитные бури также влияют на здоровье и самочувствие людей. Раздел биофизики, изучающий влияние изменений активности Солнца и вызываемых ею в земной магнитосфере возмущений на земные организмы, называется гелиобиологией .

На диске Солнца нередко видны необычные обра-зования: участки пониженной яркости — солнечные пятна и повышенной яркости — факелы. На краю диска заметны вы-ступы хромосферы — протуберанцы, иногда появляются короткоживующие очень яркие пятна-вспышки. Все они полу-чили общее название — активные образования .

Обычно активные образования возникают в так называе-мых активных областях Солнца. Эти области могут занимать значительную долю солнечного диска. Главная характеристи-ка активных областей — выход на поверхность сильных ло-кальных (т. е. местных) магнитных полей, намного более силь-ных, чем регулярное магнитное поле Солнца. Типичная для активной области схема магнит-ного поля представлена на ри-сунке 62.

Солнце, как и другие небесные тела, вращается вокруг своей оси. Это даёт возможность определить на нем полюсы и экватор и построить систему гелиографических координат (Гелиос — Солнце), полностью аналогичных географическим.

Часто по обе стороны экватора в полосе гелиографических широт 10—30° появляются солнечные пятна и факелы — светлые пятнышки, хорошо видные у пятен и у края диска. В телескоп хорошо различают-ся тёмный овал пятна и окружающая его полутень. Обычно пятна появляются группами. Характерный размер тёмного пятна около 20 000 км. Пятно на фоне фото-сферы кажется совершенно черным, однако, поскольку в пят-не температура равна 4500 K, его излучение слабее излучения фотосферы всего в 3 раза.

В пятне наблюдаются сильные магнитные поля (до 4,5 Тл). Именно наличие магнитного поля и определяет понижение температуры, поскольку оно препятствует конвекции и умень-шает тем самым поток энергии из глубинных слоёв Солнца. Пятно появляется в виде чуть расширенного промежутка меж-ду гранулами — в виде поры. Примерно через сутки пора раз-вивается в круглое пятно, а через 3—4 дня появляется полутень.

Со временем площадь пятна или группы пятен растёт и через 10—12 дней достигает максимума. После этого пятна группы начинают исчезать, и через полтора-два месяца группа исчезает вообще. Часто группа не успевает пройти все стадии и исчезает в гораздо более короткие сроки.

Образование солнечных пятен

При увеличении магнитного поля в фото-сфере конвекция сначала даже усиливается. Не очень сильное магнитное поле тормозит турбуленцию и тем самым облегча-ет конвекцию. Но более сильное поле уже затрудняет конвек-цию, и в месте выхода поля наружу температура падает — образуется солнечное пятно.

Пятна обычно окру-жены сетью ярких цепочек — фотосферным факелом. Шири-на цепочки определяется диаметром её ярких элементов (ти-па гранул) и составляет около 500 км, а длина доходит до 5000 км. Площадь факела намного (обычно в 4 раза) превы-шает площадь пятна. Факелы встречаются и вне групп или одиночных пятен. В этом случае они гораз-до слабее и заметны обычно на краю диска. Это говорит о том, что факел представляет собой облако более горячего газа в са-мых верхних слоях фотосферы. Факелы относительно устой-чивые образования. Они могут существовать в течение несколь-ких месяцев.

Над пятнами и факелами расположена флоккула — зона, в которой яркость хромосферы увеличена. Несмотря на уве-личение яркости, флоккула, как и хромосфера, остаётся не-видимой на фоне ослепительно яркого диска Солнца. Наблюдать её можно только с помощью специальных приборов — спектрогелиографов, в которых получается изображение Солн-ца в излучении в длине волны спектральной линии. В этом случае изображение флоккулы выглядит темной полоской.

Образование флоккул

Когда в углублении, образованном линиями напряжённости (рис. 62), скапливается плазма, из-за повыше-ния плотности усиливается излучение, падает температура и давление, что, в свою очередь, приводит к повышению плот-ности и усилению излучения. Постепенно «ловушка» перепол-няется, и плазма по линиям напряжённости стекает в фото-сферу. Устанавливается равновесие: горячий газ короны попа-дает в «ловушку», отдаёт свою энергию и стекает в фотосфе-ру. Так образуется флоккула.

Когда вращение Солнца выно-сит флоккулу на край Солнца, мы видим висящий спокойный протуберанец . Преобразование магнитных полей может привести к то-му, что линии напряжённости выпрямляются и плазма флок-кулы выстреливается вверх. Это эруптивный протуберанец .

Если в плазме встречаются два магнитных по-ля противоположной полярности, то происходит аннигиляция полей. Аннигиляция (уничтожение) магнитного поля по зако-ну Фарадея вследствие электромагнитной индукции вызывает появление сильного переменного электрического поля. По-скольку электрическое сопротивление плазмы мало, это вызы-вает мощный электрический ток, в магнитном поле которого запасается огромная энергия. Затем в взрывном процессе эта энергия выделяется в виде светового и рентгеновского излу-чений (рис. 61). Земной наблюдатель видит вспышку как яркую точку, неожиданно появляющуюся на диске Солнца, обычно вблизи группы пятен. Вспышку можно наблюдать в телескоп и в исключительных случаях невооружённым глазом. Материал с сайта

Однако основная часть энергии выделяется в виде кинети-ческой энергии движущихся в солнечной короне и межпла-нетном пространстве со скоростями до 1000 км/с выбросов ве-щества и потоков ускоренных до гигантских энергий (до де-сятков гигаэлектрон-вольт) электронов и протонов.

Проникающее в корону магнитное поле захватывается по-током солнечного ветра . При определённой конфигурации маг-нитного поля оно сжимает плазму, ускоряя её до очень боль-ших скоростей. Одновременно поток плазмы вытягивает ли-нии магнитной индукции. Таким образом формируется корональный луч.

Влияние вспышек

Вспышки на Солнце оказывают силь-ное воздействие на ионосферу Земли, существенно влияют на состояние околоземного космического пространства. Име-ются свидетельства влияния вспышек на

Чтобы в будущем не пропускать вспышки на Солнце, и последующие за ними полярные сияния, добавляю информацию о солнечной активности в реальном времени. Для обновления информации перезагрузите страницу.

Солнечные вспышки

На графике представлен общий поток рентгеновского излучения Солнца получаемый со спутников серии GOES в режиме реального времени. Солнечные вспышки видны в виде всплесков интенсивности. Во время мощных вспышек происходят нарушения радиосвязи в ВЧ диапазоне на дневной стороне Земли. Степень этих нарушений зависит от мощности вспышки. Балл (C,M,X) вспышек и их мощность в Вт/м 2 указаны на левой оси координат в логарифмическом масштабе. Вероятный уровень нарушений радиосвязи по шкале NOAA (R1-R5) показан справа. На графике — развитие событий в октябре 2003г.

Солнечные космические лучи (всплески радиации)

Минут через 10-15 после мощных солнечных вспышек к Земле приходят протоны высоких энергий — > 10 Мэв или так называемые солнечные космические лучи (СКЛ). В западной литературе — High energy proton flux and Solar Radiation Storms т.е. поток протонов высоких энергий или солнечная радиационная буря. Этот радиационный удар может вызывать нарушения и поломки в аппаратуре космических аппаратов, приводить к опасному облучению космонавтов и получению повышенной дозы радиации пассажирами и экипажами реактивных самолётов на высоких широтах.

Индекс геомагнитной возмущенности и магнитные бури

Усиление потока солнечного ветра и приход ударных волн корональных выбросов вызывают сильные вариации геомагнитного поля — магнитные бури. По данным, поступающим с космических аппаратов серии GOES, в режиме реального времени вычисляется уровень возмущённости геомагнитного поля, который и представлен на графике.

Ниже индекс протонов

Протоны принимают участие в термоядерных реакциях, которые являются основным источником энергии, генерируемой звёздами. В частности, реакции pp-цикла, который является источником почти всей энергии, излучаемой Солнцем, сводятся к соединению четырёх протонов в ядро гелия-4 с превращением двух протонов в нейтроны.

Максимально ожидаемый значения УФ-индекса

Австрия, Gerlitzen. 1526 м.

Значения УФ-индекса

Австрия, Gerlitzen. 1526 м.

1 2 3 4 5 6 7 8 9 10 >10
низкий умеренный сильный очень сильный экстремальный
Данные значения УФ-индекса по планете Данные комплексного мониторинга в г.Томске

Компоненты магнитного поля

Зависимости вариаций компонент магнитного поля в гаммах от местного времени.

Местное время выражено в часах Томского летнего декретного времени (ТЛДВ). ТЛДВ=UTC+7часов.

Ниже представлен уровень возмущённости геомагнитного поля в К-индексах.

Вспышки на Солнце по данным спутника GOES-15

NOAA / Space Weather Prediction Center

Поток протонов и электронов взяты из GOES-13 GOES Hp, GOES-13 и GOES-11

Solar X-ray Flux

Вспышки на Солнце

На шкале существует пять категорий (по возрастанию мощности): A, B, C, M и X. Помимо категории каждой вспышке присваивается некоторое число. Для первых четырех категорий это число от нуля до десяти, а для категории X — от нуля и выше.

HAARP феррозонд (магнитометр)

«Компонент H» (черный след) положителен магнитный север,
«Компонент D» (красный след) положителен Восток,
«Компонент Z» (синий след) положителен вниз

Подробнее: http://www.haarp.alaska.edu/cgi-bin/magnetometer/gak-mag.cgi

График GOES Hp содержит 1-минутные усредненные параллельные компоненты магнитного поля в наноТеслах (nanoTeslas — nT) измеряемый GOES-13 (W75) и GOES-11 (W135).

Примечание: Время на картинках указано североатлантическое, то есть относительно
московского времени нужно отнять 7 часов (GMT-4:00)
Источники информации:
http://sohowww.nascom.nasa.gov/data/realtime-images.html
http://www.swpc.noaa.gov/rt_plots/index.html

Активность солнца в реальном времени

Здесь представлено моделирование солнечной активности в реальном времени. Обновление изображений происходит раз в 30 минут. Возможно периодическое отключение датчиков и камер на спутниках в виду технических неисправностей.

Изображение Солнца в реальном времени(онлайн).

Ультрафиолетовый телескоп, яркие пятна соответствуют 60-80 тыс. градусам по Кельвину. Спутник SOHO LASCO C3

Изображение короны солнца в реальном времени(онлайн). Характеристики Солнца

Расстояние до Солнца : 149.6 млн. км = 1.496· 1011 м = 8.31 световая минута

Радиус Солнца : 695 990 км или 109 радиусов Земли

Масса Солнца : 1.989 · 1030 кг = 333 000 масс Земли

Температура поверхности Солнца : 5770 К

Химический состав Солнца на поверхности : 70% водорода (H), 28% гелия (He), 2% остальных элементов (C, N, O, …) по массе

Температура в центре Солнца : 15 600 000 К

Химический состав в центре Солнца : 35% водорода (H), 63% гелия (He), 2% остальных элементов (C, N, O, …) по массе

Солнце — основной источник энергии на Земле.
Основные характеристики
Среднее расстояние от Земли 1,496×10 11 м
(8,31 световых минут)
Видимая звёздная величина (V) -26,74 м
Абсолютная звёздная величина 4,83 м
Спектральный класс G2V
Параметры орбиты
Расстояние от центра Галактики ~2,5×10 20 м
(26 000 световых лет)
Расстояние от плоскости Галактики ~4,6×10 17 м
(48 световых лет)
Галактический период обращения 2,25-2,50×10 8 лет
Скорость 2,17×10 5 м/с
(на орбите вокруг центра Галактики)
2×10 4 м/с
(относительно соседних звёзд)
Физические характеристики
Средний диаметр 1,392×10 9 м
(109 диаметров Земли)
Экваториальный радиус 6,955×10 8 м
Длина окружности экватора 4,379×10 9 м
Сплюснутость 9×10 -6
Площадь поверхности 6,088×10 18 м 2
(11 900 площадей Земли)
Объём 1,4122×10 27 м 2
(1 300 000 объёмов Земли)
Масса 1,9891×10 30 кг
(332 946 масс Земли)
Средняя плотность 1409 кг/м 3
Ускорение на экваторе 274,0 м/с 2
(27,94 g)
Вторая космическая скорость (для поверхности) 617,7 км/с
(55 земных)
Эффективная температура поверхности 5515 C°
Температура короны ~1 500 000 C°
Температура ядра ~13 500 000 C°
Светимость 3,846×10 26 Вт
~3.75×10 28 Лм
Яркость 2,009×10 7 Вт/м 2 /ср
Характеристики вращения
Наклон оси 7,25°(относительно плоскости эклиптики)
67,23°(относительно плоскости Галактики)
Прямое восхождение северного полюса 286,13°
(19 ч 4 мин 30 с)
Склонение северного полюса +63,87°
Скорость вращения внешних видимых слоёв (на экваторе) 7284 км/ч
Состав фотосферы
Водород 73,46 %
Гелий 24,85 %
Кислород 0,77 %
Углерод 0,29 %
Железо 0,16 %
Сера 0,12 %
Неон 0,12 %
Азот 0,09 %
Кремний 0,07 %
Магний 0,05 %


Мы сможем увидеть то, что происходит сейчас в космосе. Иногда, фото появляется на нашем портале через считанные минуты, после того, как сработал затвор камеры во Вселенной. А это означает, что перед этим изображение успело преодолеть… полтора миллиона километров. Именно на таком расстоянии находятся спутники.

Трансляцию изображений Солнца начнем с нового современного космического телескопа. Изображения эти — удивительные. Благодаря двум американским спутникам близнецам STEREO мы можем увидеть невидимое. То есть ту сторону звезды, которая скрыта от наблюдения с Земли.

На приведенной схеме видно, что спутники-обсерватории A и B позволяют наблюдать Солнце с противоположных сторон. Изначально было запланировано, что со временем их орбиты разойдутся так, что мы сможем увидеть Солнце не просто сбоку, а полностью с обратной стороны. И в феврале 2011 года это произошло.

То что мы можем видеть прямо сейчас — похоже на фантастику. Почти в реальном времени наблюдаем скрытую жизнь космоса. Его тайну. И нам никогда не помешают в этом облака, тучи и другие атмосферные явления. Космос — идеальное место для подобных наблюдений. Кстати, непонятного здесь для ученых — 90 процентов из всех происходящих явлений. В том числе и в поведении ближайшей к нам звезды. Может, именно Вы поможете сделать основопологающие разгадки?

Смотрите: вот оно — наше Солнце (на снимке — ниже) , скромно спрятанное за «заглушкой», чтобы не производить засветку изображения. Широкоугольный объектив позволяет сделать обзор на сотни тысяч километров вокруг. Сделано это специально для того, чтобы мы могли видеть солнечную корону.

Трансляция этого изображения ведется со спутника STEREO B. Время на изображении указано по Гринвичу.

Время GMT (Гринвич): Если происходят выбросы в сторону Земли, то их направленность будет исходить к правому краю. Именно такие яркие лучистые сполохи и представляют опасность для нас — землян. Иногда, ученые пишут наспех электронным пером подсказки на изображении. Извещая нас о появлении в кадре какой-нибудь кометы или планеты. Выше — следующая «картинка» со спутника STEREO B, c маркировкой — behind_euvi_195, — но теперь уже с видом непосредственно на само Солнце. Мы наблюдаем: есть ли активность на невидимой стороне? В зависимости от местоположения сполохов по правому краю можно будет самим прогнозировать их быстроту появления на видимой стороне. Напомним, что поверхностные слои Солнца делают полный оборот около 25 суток. Вращение происходит слева направо. Зеленоватый цвет изображения появляется потому, что телескоп отображает атмосферу Солнца в определенном диапазоне волн. В данном случае — 195 А (Ангстрем). Мы «заглядываем» в температурный слой звезды на уровне около полутора миллионов градусов Цельсия. А вот на следующем изображении (ниже) — можем разглядеть более поверхностный слой, нагретый до 80 000°С Но это мы уже видим трансляцию с другого удивительного телескопа — космической обсерватории SDO. Она была запущена в космос в 2010 году. Главная ее цель — исследование динамических процессов на Солнце.

SDO транслирует изображения очень оперативно. Вы это сами можете видеть по маркировке всемирного времени на снимке. Примечательно, что взгляд этой обсерватории на Солнце точно совпадает с тем, каким мы сами видим его с Земли. Именно с этой стороны и «выстреливают» в нас опаснейшие протуберанцы и приходят магнитные бури. А образуются они, в большинстве случаев, в темных областях — пятнах. Их обширное появление — тревожный знак магнитной неспокойности. Это означает, что на Земле может произойти магнитная буря. И именно транслируемое изображение ниже позволяет нам наблюдать за ее предвестниками — пятнами.

Появились пятна — уделите более пристальное внимание своему здоровью. Доказано, что магнитным бурям подвержены абсолютно все люди. Но у одних — защитные механизмы срабатывают лучше, у других — хуже. Причины такой разницы ученым непонятны.

КАК ВЕСТИ СЕБЯ ВО ВРЕМЯ МАГНИТНЫХ БУРЬ?

Обобщающий совет врача-терапевта Мирославы БУЗЬКО:

ВПЕРВЫЕ! На нашем портале начата прямая трансляция с Международной космической станции: жизнь космонавтов, служебные переговоры, стыковки, виды Земли в реальном времени .

Кстати, неспокойная геомагнитная обстановка, создаваемая на Земле Солнцем, наиболее актуальна для тех, кто живет поближе к Северу. Это вызвано строением нашей планеты и ее положением в космосе. Территориально больше всего достается солнечных бурь — России (Сибирь и Европейский Север), США (Аляска) и Канаде.

Напомним, что солнечные изображения появляются на портале с временной задержкой, необходимой на их передачу с космической обсерватории и обработку для показа. Все проделывается в автоматическом режиме.

Если Вы видите на изображении или искаженную «картинку» — это означает, что произошел технический сбой. Иногда, в этом может быть само Солнце, которое в очередной раз выплеснуло на окружающих свою гигантскую энергию: А выбросы эти могут очень серъезно угрожать нашей цивилизации. Большая часть современных электронных устройств не защищены от воздействия аномальных солнечных излучений. Они могут выйти из строя моментально.

О нынешнем неблагоприятном прогнозе активности Солнца и о причинах, которые могут сильно разрушить земную инфраструктуру, напомним, можете прочитать в материале «Ахиллесова пята нового века»

Наблюдайте за жизнью настоящей Звезды! От нее реально зависит наша с Вами жизнь:

(Трансляция обеспечивается благодаря открытости в предоставлении информации со стороны космических агентств ЕС и NASA)

Иформер воздействия Солнца

Показаны средние прогнозные значения глoбaльного геомагнитного индекса Кр, на основе геофизических данных с двенадцати обсерваторий мира, собранных Службой Солнца SWPC NOAA. Данные нижеприведенного прогноза обновляются ежедневно. Кстати, Вы можете легко убедиться, что ученые почти не умеют прогнозировать солнечные события. Достаточно сравнить их предсказания с реальной ситуацией. Сейчас прогноз на три дня выглядит следующим образом:

Кр-индекс — характеризует общепланетарное геомагнитное поле, то есть — в масштабах всей Земли. По каждому дню показаны восемь значений — на каждый трёхчасовой интервал времени, в течении суток (0-3, 3-6, 6-9, 9-12, 12-15, 15-18, 18-21, 21-00 часов). Время указано московское (msk)

Вертикальные линии ЗЕЛЕНОГО цвета (I ) — безопасный уровень геомагнитной активности.

Вертикальные линии КРАСНОГО цвета (I ) — магнитная буря (Kp>5). Чем выше красная вертикальная линия, тем сильнее буря. Уровень, с которого вероятны заметные влияния на здоровье метеочувствительных людей (Kp=7) отмечен горизонтальной линией красного цвета.

Ниже вы можете видеть реальное отображение геомагнитного воздействия Солнца. По шкале значений Kp-индекса определяйтесь со степенью его опасности для вашего здоровья. Цифра выше 4-5 единиц означает наступление магнитной бури. Отметим, что в данном случае, на графике оперативно отображается уровень солнечного излучения уже достигшего Земли. Эти данные фиксируются и выдаются каждые три часа несколькими станциями слежения в США,
Канаде и Великобритании. А сводный результат мы видим благодаря Центру космических прогнозов (NOAA/Space Weather Prediction Center)

ВАЖНО! Учитывая, что опасный выброс солнечной энергии достигает Земли не ранее, чем через сутки, вы сами, с учетом оперативных изображений Солнца, транслируемых выше, сможете заранее подготовться к неблагоприятному воздействию, уровень которого отображается ниже.

Индекс геомагнитной возмущенности и магнитные бури

Индекс Kp определяет степень геомагнитной возмущенности. Чем выше индекс Kp тем возмущения больше. Kp < 4 — слабые возмущения, Kp > 4 — сильные возмущения.

Обозначение информера солнечного воздействия

Рентгеновское излучение Солнца*

Normal : Обычный солнечный рентгеновский поток.

Active : Возросшее солнечное рентгеновское излучение.

Активная область на Солнце – (АО) – это совокупность изменяющихся структурных образований в некоторой ограниченной области солнечной атмосферы, связанная с усилением в ней магнитного поля от значений 10–20 до нескольких (4–5) тысяч эрстед. В видимом свете наиболее заметным структурным образованием активной области являются темные, резко очерченные солнечные пятна, часто образующие целые группы. Обычно среди множества более или менее мелких пятен выделяются два крупных, образующих биполярную группу пятен с противоположной полярностью магнитного поля в них. Отдельные пятна и вся группа обычно окружены яркими ажурными, похожими на сетку структурами – факелами. Здесь магнитные поля достигают значений в десятки эрстед. В белом свете факелы лучше всего заметны на краю солнечного диска, однако, в сильных спектральных линиях (особенно водорода, ионизованного кальция и др. элементов), а также в далекой ультрафиолетовой и рентгеновской областях спектра, они значительно ярче и занимают большую площадь. Протяженности активной области достигают нескольких сотен тысяч километров, а время жизни – от нескольких дней до нескольких месяцев. Как правило, их можно наблюдать практически во всех диапазонах солнечного электромагнитного спектра от рентгеновских, ультрафиолетовых и видимых лучей до инфракрасных и радио волн. На краю солнечного диска, когда активная область видна сбоку, над нею, в солнечной короне в эмиссионных линиях часто наблюдаются протуберанцы – огромные плазменные «облака» причудливых форм. Время от времени в активной области происходят внезапные взрывы плазмы – солнечные вспышки. Они порождают мощное ионизующее излучение (в основном, рентгеновское) и проникающее излучение (энергичные элементарные частицы, электроны и протоны). Высокоскоростные корпускулярные плазменные потоки изменяют структуру солнечной короны. Когда Земля попадает в такой поток, деформируется ее магнитосфера и возникает магнитная буря. Ионизующее излучение сильно влияет на условия в верхних слоях атмосферы и создает возмущения в ионосфере. Возможны влияния и на многие другие физические явления (см . раздел СОЛНЕЧНО-ЗЕМНЫЕ СВЯЗИ).

Пикельнер С.Б. Солнце. М., Физматгиз, 1961
Мензел Д. Наше солнце . М., Физматгиз, 1963
Витинский Ю.И., Оль А.И., Сазонов Б.И. Солнце и атмосфера Земли . Л., Гидрометеоиздат, 1976
Кононович Э.В. Солнце – дневная звезда . М., Просвещение, 1982
Миттон С. Дневная звезда. М., Мир, 1984
Кононович Э.В., Мороз В.И. Общий курс астрономии . М., УРСС, 2001

Найти "СОЛНЕЧНАЯ АКТИВНОСТЬ " на

Нам кажется, что источник жизни на Земле - солнечное излучение - постоянен и неизменен. Непрерывное развитие жизни на нашей планете в течение последнего миллиарда лет как бы подтверждает это. Но физика Солнца, за минувшее десятилетие достигшая больших успехов, доказала, что излучение Солнца испытывает колебания, имеющие свои периоды, ритмы и циклы. На Солнце появляются пятна, факелы, протуберанцы. Число их возрастает в течение 4-5 лет до наивысшего предела в год солнечной активности.

Это и есть время максимума солнечной активности. В эти годы Солнце выбрасывает дополнительное количество заряженных электричеством частичек - корпускул, которые со скоростью более 1000 км/сек несутся в межпланетном простран-стве и врываются в атмосферу Земли. Особенно мощные потоки корпускул исходят при хромосферных вспышках - особом виде взрывов солнечной материи. Во время этих исключительно сильных вспышек Солнце выбрасывает так называемые космические лучи. Эти лучи состоят из осколков атомных ядер и приходят к нам из глубины Вселенной. В годы солнечной активности усиливается ультрафиолетовое, рентгеновское и радиоизлучение Солнца.

Периоды солнечной активности оказывают огромное влияние на изменение погоды и усиление природных катаклизмов, что прекрасно известно из истории. Опосредованно пики солнечной активности, а также вспышки на Солнце могут воздействовать на общественные процессы, вызывая голод, войны и революции. При этом утверждение о наличии прямой связи между максимумами активности и революциями не имеет под собой никакой научно подтвержденной теории. Однако, в любом случае, понятно, что прогноз солнечной активности в связи с погодой является важнейшей задачей климатологии. Повышенная солнечная активность отрицательно воздействует на здоровье людей и их физическое состояние, нарушает биологические ритмы.

Излучение Солнца несет с собой большие запасы энергии. Все виды этой энергии, попадая в атмосферу, в основном поглощаются ее верхними слоями, где происходят, как говорят ученые, «возмущения». Силовые линии магнитного поля Земли направляют обильные потоки корпускул в полярные широты. В связи с этим там возникают магнитные бури и полярные сияния. Корпускулярные лучи начинают проникать даже в атмосферу умеренных и южных широт. Тогда вспыхивают полярные сияния в таких отдаленных от полярных стран местах, как Москва, Харьков, Сочи, Ташкент. Такие явления наблюдались неоднократно и будут не раз наблюдаться в будущем.

Иногда магнитные бури достигают такой силы, что прерывают работу телефонной и радиосвязи, нарушают работу линий электропередач, вызывают сбои в электроснабжении.

Ультрафиолетовые лучи Солнца почти целиком поглощаются высокими слоями атмосферы

Для Земли это имеет огромное значение: ведь в большом количестве ультрафиолетовые лучи губительны для всего живого.

Солнечная активность, воздействуя на высокие слои атмосферы, существенным образом влияет на общую циркуляцию воздушных масс. Следовательно, оно отражается на погоде и климате всей Земли. По-видимому, влияние возмущений, возникающих в верхних слоях воздушного океана, передаются в его нижние слои - тропосферу. При полетах искусственных спутников Земли и метеорологических ракет были обнаружены расширения и уплотнения высоких слоев атмосферы: воздушные приливы и отливы, подобные океаническим ритмам. Однако механизм взаимосвязи индекса высоких и низких слоев атмосферы полностью еще не удалось раскрыть. Бесспорно, что в годы максимума солнечной активности происходит усиление циклов циркуляции атмосферы, чаще происходят столкновения теплых и холодных течений воздушных масс.

На Земле существуют области жаркой погоды (экватор и часть тропиков) и гигантские холодильники - Арктика и особенно Антарктика . Между этими областями Земли всегда существует разница в температуре и давлении атмосферы, что приводит в движение огромные массы воздуха. Идет непрерывная борьба между теплыми и холодными течениями, стремящимися выровнять разницу, возникающую из-за изменений в температуре и давлении. Иногда теплый воздух «берет перевес» и проникает далеко к северу до Гренландии и даже к полюсу. В других случаях массы арктического воздуха прорываются на юг до Черного и Средиземного морей, доходят до Средней Азии и Египта. Граница борющихся воздушных масс представляет собой самые неспокойные области атмосферы нашей планеты.

Когда разница в температуре движущихся воздушных масс возрастает, то на границе возникают мощные циклоны и антициклоны , порождающие частые грозы, ураганы, ливни.

Современные климатические аномалии вроде лета 2010 в европейской части России, и многочисленных наводнений в Азии не являются чем-то экстраординарным. Их не стоит считать предвестниками скорого конца света, или свидетельством глобального изменения климата. Приведем пример из истории.

В 1956 г. бурная погода охватила северное и южное полушария. Во многих районах Земли это вызвало стихийные бедствия и резкое изменение погоды. В Индии паводки на реках повторялись несколько раз. Вода затопила тысячи сел и смыла посевы. От наводнений пострадало около 1 млн. человек. Прогнозы не работали. От ливней, гроз и наводнений летом этого же года пострадали даже такие страны, как Иран и Афганистан, где обычно в эти месяцы бывают засухи. Особенно высокая солнечная активность с пиком излучения в период 1957-1959 годов, вызвала еще больший рост числа метеорологических катастроф - ураганов, гроз, ливней.

Всюду наблюдались резкие контрасты погоды. Например, в Европейской части СССР за 1957 г. оказалась необычайно теплой: в январе средняя температура была -5°. В феврале в Москве средняя температура достигла -1°, при норме -9°. В это же время в Западной Сибири и в республиках Средней Азии стояли сильные морозы. В Казахстане температура понизилась до -40°. Алма-Ата и другие города Средней Азии были буквально засыпаны снегом. В южном полушарии - в Австралии и в Уругвае - в те же месяцы стояла небывалая жара с суховеями. Атмосфера бушевала до 1959 г., когда начался спад солнечной активности.

Влияние вспышек Солнца и уровня солнечной активности на состояние растительного и животного мира сказывается косвенным путем: через циклы общей циркуляции атмосферы. Например, ширина слоев спиленного дерева, по которым определяется возраст растения, зависит главным образом от ежегодного количества осадков. В засушливые годы слои эти очень тонки. Количество годовых осадков изменяется периодически, что можно увидеть на годичных кольцах старых деревьев.

Срезы, сделанные на стволах мореных дубов (их находят в руслах рек), позволили узнать историю климата за несколько тысячелетий до нашего времени. Существование определенных периодов, или циклов, солнечной активности подтверждает исследования материалов, которые выносят реки с суши и откладывают на дне озер, морей и океанов. Анализ состояния проб донных отложений позволяет проследить течение солнечной активности на протяжении сотен тысяч лет. Взаимосвязи солнечной активности и процессов природы на Земле очень сложны и не объединены в общую теорию.

Ученые установили, что колебания солнечной активности совершаются в пределах от 9 до 14 лет

Солнечная активность влияет на уровень Каспийского моря, на соленость вод Балтийского и ледовитость северных морей. Для цикла повышенной солнечной деятельности характерно низкое стояние уровня Каспия: повышение температуры воздуха вызывает усиленное испарение воды и уменьшение стока Волги - главной питающей артерии Каспия. По той же причине повысилась соленость Балтийского моря и уменьшилась ледовитость северных морей . В принципе, ученые могут дать прогноз будущего режима северных морей на ряд ближайших десятилетий.

В настоящее время часто слышатся доводы, что Северный Ледовитый океан вскоре освободится ото льда и будет пригоден для судоходства. Следует искренне посочувствовать «познаниям» «экспертов», делающих такие заявления. Да, возможно, частично освободится на год-другой. А потом снова замерзнет. И чего Вы нам сказали такого, о чем мы не знали? Зависимость ледяного покрова северных морей от циклов и периодов повышенной солнечной активности надежно установлена более 50 лет назад и подтверждена десятилетиями наблюдений. Поэтому можно с высокой уверенностью утверждать, что лед нарастет так же, как и растаял, по мере прохождения цикла солнечной активности.

Просто о сложном – Солнечная активность и ее влияние на природу и климат в справочнике
  • Галерея изображений, картинки, фотографии.
  • Солнечная активность и ее влияние на природу и климат – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Солнечная активность и ее влияние на природу и климат.
  • Ссылки на материалы и источники – Солнечная активность и ее влияние на природу и климат в справочнике.
    Похожие записи
Выбор редакции
Однажды где-то в начале 20 века во Франции или, может быть, в Швейцарии, некто, варивший себе суп, случайно уронил в него кусочек сыра....

Увидеть во сне историю, каким-то образом связанную с забором – значит получить важный знак, неоднозначный, касающийся и физической...

Главная героиня сказки «Двенадцать месяцев» — девочка, живущая в одном доме с мачехой и сводной сестрой. Характер у мачехи был недобрый,...

Тема и цели соответствуют содержанию занятия. Структура занятия логически выдержана, речевой материал соответствует программным...
Типа 22, в штормовую погоду Проект 22 имеет необходимую для ближней противовоздушной обороны и противоракетная оборона зенитно-ракетных...
По праву лазанью можно считать коронным итальянским блюдом, которое не уступает многим другим изыскам этой страны. В наше время лазанью...
В 606 году до н. э Навуходоносор завоевал Иерусалим, где и проживал будущий великий пророк. Даниил в возрасте 15 лет вместе с другими...
перловая крупа 250 г огурцы свежие 1 кг 500 г лук репчатый 500 г морковь 500 г томатная паста 50 г масло подсолнечное рафинированное 35...
1. Какое строение имеет клетка простейших? Почему она является самостоятельным организмом? Клетка простейших выполняет все функции...