Formula for calculating the probability of an event in fractions. Probability of event


“Accidents are not accidental”... It sounds like something a philosopher said, but in fact, studying randomness is the destiny of the great science of mathematics. In mathematics, chance is dealt with by probability theory. Formulas and examples of tasks, as well as the basic definitions of this science will be presented in the article.

What is probability theory?

Probability theory is one of the mathematical disciplines that studies random events.

To make it a little clearer, let's give a small example: if you throw a coin up, it can land on heads or tails. While the coin is in the air, both of these probabilities are possible. That is, the probability of possible consequences is 1:1. If one is drawn from a deck of 36 cards, then the probability will be indicated as 1:36. It would seem that there is nothing to explore and predict here, especially with the help of mathematical formulas. However, if you repeat a certain action many times, you can identify a certain pattern and, based on it, predict the outcome of events in other conditions.

To summarize all of the above, probability theory in the classical sense studies the possibility of the occurrence of one of the possible events in a numerical value.

From the pages of history

The theory of probability, formulas and examples of the first tasks appeared in the distant Middle Ages, when attempts to predict the outcome of card games first arose.

Initially, probability theory had nothing to do with mathematics. It was justified by empirical facts or properties of an event that could be reproduced in practice. The first works in this area as a mathematical discipline appeared in the 17th century. The founders were Blaise Pascal and Pierre Fermat. They studied gambling for a long time and saw certain patterns, which they decided to tell the public about.

The same technique was invented by Christiaan Huygens, although he was not familiar with the results of the research of Pascal and Fermat. The concept of “probability theory”, formulas and examples, which are considered the first in the history of the discipline, were introduced by him.

The works of Jacob Bernoulli, Laplace's and Poisson's theorems are also of no small importance. They made probability theory more like a mathematical discipline. Probability theory, formulas and examples of basic tasks received their current form thanks to Kolmogorov’s axioms. As a result of all the changes, probability theory became one of the mathematical branches.

Basic concepts of probability theory. Events

The main concept of this discipline is “event”. There are three types of events:

  • Reliable. Those that will happen anyway (the coin will fall).
  • Impossible. Events that will not happen under any circumstances (the coin will remain hanging in the air).
  • Random. The ones that will happen or won't happen. They can be influenced by various factors that are very difficult to predict. If we talk about a coin, then there are random factors that can affect the result: the physical characteristics of the coin, its shape, its original position, the force of the throw, etc.

All events in the examples are indicated in capital Latin letters, with the exception of P, which has a different role. For example:

  • A = “students came to lecture.”
  • Ā = “students did not come to the lecture.”

In practical tasks, events are usually written down in words.

One of the most important characteristics of events is their equal possibility. That is, if you toss a coin, all variants of the initial fall are possible until it falls. But events are also not equally possible. This happens when someone deliberately influences an outcome. For example, “marked” playing cards or dice, in which the center of gravity is shifted.

Events can also be compatible and incompatible. Compatible events do not exclude each other's occurrence. For example:

  • A = “the student came to the lecture.”
  • B = “the student came to the lecture.”

These events are independent of each other, and the occurrence of one of them does not affect the occurrence of the other. Incompatible events are defined by the fact that the occurrence of one excludes the occurrence of another. If we talk about the same coin, then the loss of “tails” makes it impossible for the appearance of “heads” in the same experiment.

Actions on events

Events can be multiplied and added; accordingly, logical connectives “AND” and “OR” are introduced in the discipline.

The amount is determined by the fact that either event A or B, or two, can occur simultaneously. If they are incompatible, the last option is impossible; either A or B will be rolled.

Multiplication of events consists in the appearance of A and B at the same time.

Now we can give several examples to better remember the basics, probability theory and formulas. Examples of problem solving below.

Exercise 1: The company takes part in a competition to receive contracts for three types of work. Possible events that may occur:

  • A = “the firm will receive the first contract.”
  • A 1 = “the firm will not receive the first contract.”
  • B = “the firm will receive a second contract.”
  • B 1 = “the firm will not receive a second contract”
  • C = “the firm will receive a third contract.”
  • C 1 = “the firm will not receive a third contract.”

Using actions on events, we will try to express the following situations:

  • K = “the company will receive all contracts.”

In mathematical form, the equation will have the following form: K = ABC.

  • M = “the company will not receive a single contract.”

M = A 1 B 1 C 1.

Let’s complicate the task: H = “the company will receive one contract.” Since it is not known which contract the company will receive (first, second or third), it is necessary to record the entire series of possible events:

H = A 1 BC 1 υ AB 1 C 1 υ A 1 B 1 C.

And 1 BC 1 is a series of events where the firm does not receive the first and third contract, but receives the second. Other possible events were recorded using the appropriate method. The symbol υ in the discipline denotes the connective “OR”. If we translate the above example into human language, the company will receive either the third contract, or the second, or the first. In a similar way, you can write down other conditions in the discipline “Probability Theory”. The formulas and examples of problem solving presented above will help you do this yourself.

Actually, the probability

Perhaps, in this mathematical discipline, the probability of an event is the central concept. There are 3 definitions of probability:

  • classic;
  • statistical;
  • geometric.

Each has its place in the study of probability. Probability theory, formulas and examples (9th grade) mainly use the classical definition, which sounds like this:

  • The probability of situation A is equal to the ratio of the number of outcomes that favor its occurrence to the number of all possible outcomes.

The formula looks like this: P(A)=m/n.

A is actually an event. If a case opposite to A appears, it can be written as Ā or A 1 .

m is the number of possible favorable cases.

n - all events that can happen.

For example, A = “draw a card of the heart suit.” There are 36 cards in a standard deck, 9 of them are of hearts. Accordingly, the formula for solving the problem will look like:

P(A)=9/36=0.25.

As a result, the probability that a card of the heart suit will be drawn from the deck will be 0.25.

Towards higher mathematics

Now it has become a little known what the theory of probability is, formulas and examples of solving problems that come across in the school curriculum. However, probability theory is also found in higher mathematics, which is taught in universities. Most often they operate with geometric and statistical definitions of the theory and complex formulas.

The theory of probability is very interesting. It is better to start studying formulas and examples (higher mathematics) small - with the statistical (or frequency) definition of probability.

The statistical approach does not contradict the classical one, but slightly expands it. If in the first case it was necessary to determine with what probability an event will occur, then in this method it is necessary to indicate how often it will occur. Here a new concept of “relative frequency” is introduced, which can be denoted by W n (A). The formula is no different from the classic one:

If the classical formula is calculated for prediction, then the statistical one is calculated according to the results of the experiment. Let's take a small task for example.

The technological control department checks products for quality. Among 100 products, 3 were found to be of poor quality. How to find the frequency probability of a quality product?

A = “the appearance of a quality product.”

W n (A)=97/100=0.97

Thus, the frequency of a quality product is 0.97. Where did you get 97 from? Out of 100 products that were checked, 3 were found to be of poor quality. We subtract 3 from 100 and get 97, this is the amount of quality goods.

A little about combinatorics

Another method of probability theory is called combinatorics. Its basic principle is that if a certain choice A can be made in m different ways, and a choice B can be made in n different ways, then the choice of A and B can be made by multiplication.

For example, there are 5 roads leading from city A to city B. There are 4 paths from city B to city C. In how many ways can you get from city A to city C?

It's simple: 5x4=20, that is, in twenty different ways you can get from point A to point C.

Let's complicate the task. How many ways are there to lay out cards in solitaire? There are 36 cards in the deck - this is the starting point. To find out the number of ways, you need to “subtract” one card at a time from the starting point and multiply.

That is, 36x35x34x33x32...x2x1= the result does not fit on the calculator screen, so it can simply be designated 36!. Sign "!" next to the number indicates that the entire series of numbers is multiplied together.

In combinatorics there are such concepts as permutation, placement and combination. Each of them has its own formula.

An ordered set of elements of a set is called an arrangement. Placements can be repeated, that is, one element can be used several times. And without repetition, when elements are not repeated. n are all elements, m are elements that participate in the placement. The formula for placement without repetition will look like:

A n m =n!/(n-m)!

Connections of n elements that differ only in the order of placement are called permutations. In mathematics it looks like: P n = n!

Combinations of n elements of m are those compounds in which it is important what elements they were and what their total number is. The formula will look like:

A n m =n!/m!(n-m)!

Bernoulli's formula

In probability theory, as in every discipline, there are works of outstanding researchers in their field who have taken it to a new level. One of these works is the Bernoulli formula, which allows you to determine the probability of a certain event occurring under independent conditions. This suggests that the occurrence of A in an experiment does not depend on the occurrence or non-occurrence of the same event in earlier or subsequent trials.

Bernoulli's equation:

P n (m) = C n m ×p m ×q n-m.

The probability (p) of the occurrence of event (A) is constant for each trial. The probability that the situation will occur exactly m times in n number of experiments will be calculated by the formula presented above. Accordingly, the question arises of how to find out the number q.

If event A occurs p number of times, accordingly, it may not occur. Unit is a number that is used to designate all outcomes of a situation in a discipline. Therefore, q is a number that denotes the possibility of an event not occurring.

Now you know Bernoulli's formula (probability theory). We will consider examples of problem solving (first level) below.

Task 2: A store visitor will make a purchase with probability 0.2. 6 visitors independently entered the store. What is the likelihood that a visitor will make a purchase?

Solution: Since it is unknown how many visitors should make a purchase, one or all six, it is necessary to calculate all possible probabilities using the Bernoulli formula.

A = “the visitor will make a purchase.”

In this case: p = 0.2 (as indicated in the task). Accordingly, q=1-0.2 = 0.8.

n = 6 (since there are 6 customers in the store). The number m will vary from 0 (not a single customer will make a purchase) to 6 (all visitors to the store will purchase something). As a result, we get the solution:

P 6 (0) = C 0 6 ×p 0 ×q 6 =q 6 = (0.8) 6 = 0.2621.

None of the buyers will make a purchase with probability 0.2621.

How else is Bernoulli's formula (probability theory) used? Examples of problem solving (second level) below.

After the above example, questions arise about where C and r went. Relative to p, a number to the power of 0 will be equal to one. As for C, it can be found by the formula:

C n m = n! /m!(n-m)!

Since in the first example m = 0, respectively, C = 1, which in principle does not affect the result. Using the new formula, let's try to find out what is the probability of two visitors purchasing goods.

P 6 (2) = C 6 2 ×p 2 ×q 4 = (6×5×4×3×2×1) / (2×1×4×3×2×1) × (0.2) 2 × (0.8) 4 = 15 × 0.04 × 0.4096 = 0.246.

The theory of probability is not that complicated. Bernoulli's formula, examples of which are presented above, is direct proof of this.

Poisson's formula

Poisson's equation is used to calculate low probability random situations.

Basic formula:

P n (m)=λ m /m! × e (-λ) .

In this case λ = n x p. Here is a simple Poisson formula (probability theory). We will consider examples of problem solving below.

Task 3: The factory produced 100,000 parts. Occurrence of a defective part = 0.0001. What is the probability that there will be 5 defective parts in a batch?

As you can see, marriage is an unlikely event, and therefore the Poisson formula (probability theory) is used for calculation. Examples of solving problems of this kind are no different from other tasks in the discipline; we substitute the necessary data into the given formula:

A = “a randomly selected part will be defective.”

p = 0.0001 (according to the task conditions).

n = 100000 (number of parts).

m = 5 (defective parts). We substitute the data into the formula and get:

R 100000 (5) = 10 5 /5! X e -10 = 0.0375.

Just like the Bernoulli formula (probability theory), examples of solutions using which are written above, the Poisson equation has an unknown e. In fact, it can be found by the formula:

e -λ = lim n ->∞ (1-λ/n) n .

However, there are special tables that contain almost all values ​​of e.

De Moivre-Laplace theorem

If in the Bernoulli scheme the number of trials is sufficiently large, and the probability of occurrence of event A in all schemes is the same, then the probability of occurrence of event A a certain number of times in a series of tests can be found by Laplace’s formula:

Р n (m)= 1/√npq x ϕ(X m).

X m = m-np/√npq.

To better remember Laplace’s formula (probability theory), examples of problems are below to help.

First, let's find X m, substitute the data (they are all listed above) into the formula and get 0.025. Using tables, we find the number ϕ(0.025), the value of which is 0.3988. Now you can substitute all the data into the formula:

P 800 (267) = 1/√(800 x 1/3 x 2/3) x 0.3988 = 3/40 x 0.3988 = 0.03.

Thus, the probability that the flyer will work exactly 267 times is 0.03.

Bayes formula

The Bayes formula (probability theory), examples of solving problems with the help of which will be given below, is an equation that describes the probability of an event based on the circumstances that could be associated with it. The basic formula is as follows:

P (A|B) = P (B|A) x P (A) / P (B).

A and B are definite events.

P(A|B) is a conditional probability, that is, event A can occur provided that event B is true.

P (B|A) - conditional probability of event B.

So, the final part of the short course “Probability Theory” is the Bayes formula, examples of solutions to problems with which are below.

Task 5: Phones from three companies were brought to the warehouse. At the same time, the share of phones that are manufactured at the first plant is 25%, at the second - 60%, at the third - 15%. It is also known that the average percentage of defective products at the first factory is 2%, at the second - 4%, and at the third - 1%. You need to find the probability that a randomly selected phone will be defective.

A = “randomly picked phone.”

B 1 - the phone that the first factory produced. Accordingly, introductory B 2 and B 3 will appear (for the second and third factories).

As a result we get:

P (B 1) = 25%/100% = 0.25; P(B 2) = 0.6; P (B 3) = 0.15 - thus we found the probability of each option.

Now you need to find the conditional probabilities of the desired event, that is, the probability of defective products in companies:

P (A/B 1) = 2%/100% = 0.02;

P(A/B 2) = 0.04;

P (A/B 3) = 0.01.

Now let’s substitute the data into the Bayes formula and get:

P (A) = 0.25 x 0.2 + 0.6 x 0.4 + 0.15 x 0.01 = 0.0305.

The article presents probability theory, formulas and examples of problem solving, but this is only the tip of the iceberg of a vast discipline. And after everything that has been written, it will be logical to ask the question of whether the theory of probability is needed in life. It’s difficult for an ordinary person to answer; it’s better to ask someone who has used it to win the jackpot more than once.

In economics, as in other areas of human activity or in nature, we constantly have to deal with events that cannot be accurately predicted. Thus, the sales volume of a product depends on demand, which can vary significantly, and on a number of other factors that are almost impossible to take into account. Therefore, when organizing production and carrying out sales, you have to predict the outcome of such activities on the basis of either your own previous experience, or similar experience of other people, or intuition, which to a large extent also relies on experimental data.

In order to somehow evaluate the event in question, it is necessary to take into account or specially organize the conditions in which this event is recorded.

The implementation of certain conditions or actions to identify the event in question is called experience or experiment.

The event is called random, if as a result of experience it may or may not occur.

The event is called reliable, if it necessarily appears as a result of a given experience, and impossible, if it cannot appear in this experience.

For example, snowfall in Moscow on November 30 is a random event. The daily sunrise can be considered a reliable event. Snowfall at the equator can be considered an impossible event.

One of the main tasks in probability theory is the task of determining a quantitative measure of the possibility of an event occurring.

Algebra of events

Events are called incompatible if they cannot be observed together in the same experience. Thus, the presence of two and three cars in one store for sale at the same time are two incompatible events.

Amount events is an event consisting of the occurrence of at least one of these events

An example of the sum of events is the presence of at least one of two products in the store.

The work events is an event consisting of the simultaneous occurrence of all these events

An event consisting of the appearance of two goods in a store at the same time is a product of events: - the appearance of one product, - the appearance of another product.

Events form a complete group of events if at least one of them is sure to occur in experience.

Example. The port has two berths for receiving ships. Three events can be considered: - the absence of ships at the berths, - the presence of one ship at one of the berths, - the presence of two ships at two berths. These three events form a complete group of events.

Opposite two unique possible events that form a complete group are called.

If one of the events that is opposite is denoted by , then the opposite event is usually denoted by .

Classical and statistical definitions of event probability

Each of the equally possible results of tests (experiments) is called an elementary outcome. They are usually designated by letters. For example, a die is thrown. There can be a total of six elementary outcomes based on the number of points on the sides.

From elementary outcomes you can create a more complex event. Thus, the event of an even number of points is determined by three outcomes: 2, 4, 6.

A quantitative measure of the possibility of the occurrence of the event in question is probability.

The most widely used definitions of the probability of an event are: classic And statistical.

The classical definition of probability is associated with the concept of a favorable outcome.

The outcome is called favorable to a given event if its occurrence entails the occurrence of this event.

In the above example, the event in question—an even number of points on the rolled side—has three favorable outcomes. In this case, the general
number of possible outcomes. This means that the classical definition of the probability of an event can be used here.

Classic definition equals the ratio of the number of favorable outcomes to the total number of possible outcomes

where is the probability of the event, is the number of outcomes favorable to the event, is the total number of possible outcomes.

In the considered example

The statistical definition of probability is associated with the concept of the relative frequency of occurrence of an event in experiments.

The relative frequency of occurrence of an event is calculated using the formula

where is the number of occurrences of an event in a series of experiments (tests).

Statistical definition. The probability of an event is the number around which the relative frequency stabilizes (sets) with an unlimited increase in the number of experiments.

In practical problems, the probability of an event is taken to be the relative frequency for a sufficiently large number of trials.

From these definitions of the probability of an event it is clear that the inequality is always satisfied

To determine the probability of an event based on formula (1.1), combinatorics formulas are often used, which are used to find the number of favorable outcomes and the total number of possible outcomes.

So, let's talk about a topic that interests a lot of people. In this article I will answer the question of how to calculate the probability of an event. I will give formulas for such a calculation and several examples to make it clearer how this is done.

What is probability

Let's start with the fact that the probability that this or that event will occur is a certain amount of confidence in the eventual occurrence of some result. For this calculation, a total probability formula has been developed that allows you to determine whether the event you are interested in will occur or not, through the so-called conditional probabilities. This formula looks like this: P = n/m, the letters can change, but this does not affect the essence itself.

Examples of probability

Using a simple example, let's analyze this formula and apply it. Let's say you have a certain event (P), let it be a throw of a dice, that is, an equilateral die. And we need to calculate what is the probability of getting 2 points on it. To do this, you need the number of positive events (n), in our case - the loss of 2 points, for the total number of events (m). A roll of 2 points can only happen in one case, if there are 2 points on the dice, since otherwise the sum will be greater, it follows that n = 1. Next, we count the number of rolls of any other numbers on the dice, per 1 dice - these are 1, 2, 3, 4, 5 and 6, therefore, there are 6 favorable cases, that is, m = 6. Now, using the formula, we do a simple calculation P = 1/6 and we find that the roll of 2 points on the dice is 1/6, that is, the probability of the event is very low.

Let's also look at an example using colored balls that are in a box: 50 white, 40 black and 30 green. You need to determine what is the probability of drawing a green ball. And so, since there are 30 balls of this color, that is, there can only be 30 positive events (n = 30), the number of all events is 120, m = 120 (based on the total number of all balls), using the formula we calculate that the probability of drawing a green ball is will be equal to P = 30/120 = 0.25, that is, 25% of 100. In the same way, you can calculate the probability of drawing a ball of a different color (black it will be 33%, white 42%).

How to calculate the probability of an event?

I understand that everyone wants to know in advance how the sporting event will end, who will win and who will lose. With this information, you can bet on sporting events without fear. But is it even possible, and if so, how to calculate the probability of an event?

Probability is a relative value, therefore it cannot speak with certainty about any event. This value allows you to analyze and evaluate the need to place a bet on a particular competition. Determining probabilities is a whole science that requires careful study and understanding.

Probability coefficient in probability theory

In sports betting, there are several options for the outcome of the competition:

  • first team victory;
  • victory of the second team;
  • draw;
  • total

Each outcome of the competition has its own probability and frequency with which this event will occur, provided that the initial characteristics are maintained. As we said earlier, it is impossible to accurately calculate the probability of any event - it may or may not coincide. Thus, your bet can either win or lose.

There cannot be a 100% accurate prediction of the results of the competition, since many factors influence the outcome of the match. Naturally, bookmakers do not know the outcome of the match in advance and only assume the result, making decisions using their analysis system and offering certain odds for betting.

How to calculate the probability of an event?

Let’s assume that the bookmaker’s odds are 2.1/2 – we get 50%. It turns out that coefficient 2 is equal to the probability of 50%. Using the same principle, you can get a break-even probability coefficient - 1/probability.

Many players think that after several repeated defeats, a win will definitely happen - this is a mistaken opinion. The probability of winning a bet does not depend on the number of losses. Even if you flip several heads in a row in a coin game, the probability of flipping tails remains the same - 50%.

When a coin is tossed, we can say that it will land heads up, or probability this is 1/2. Of course, this does not mean that if a coin is tossed 10 times, it will necessarily land on heads 5 times. If the coin is "fair" and if it is tossed many times, then heads will land very close half the time. Thus, there are two types of probabilities: experimental And theoretical .

Experimental and theoretical probability

If we flip a coin a large number of times - say 1000 - and count how many times it lands on heads, we can determine the probability that it lands on heads. If heads are thrown 503 times, we can calculate the probability of it landing:
503/1000, or 0.503.

This experimental definition of probability. This definition of probability comes from observation and study of data and is quite common and very useful. Here, for example, are some probabilities that were determined experimentally:

1. The probability that a woman will develop breast cancer is 1/11.

2. If you kiss someone who has a cold, then the probability that you will also get a cold is 0.07.

3. A person who has just been released from prison has an 80% chance of returning to prison.

If we consider tossing a coin and taking into account that it is just as likely that it will come up heads or tails, we can calculate the probability of getting heads: 1/2. This is a theoretical definition of probability. Here are some other probabilities that have been determined theoretically using mathematics:

1. If there are 30 people in a room, the probability that two of them have the same birthday (excluding year) is 0.706.

2. During a trip, you meet someone, and during the conversation you discover that you have a mutual friend. Typical reaction: “This can’t be!” In fact, this phrase is not suitable, because the probability of such an event is quite high - just over 22%.

Thus, experimental probabilities are determined through observation and data collection. Theoretical probabilities are determined through mathematical reasoning. Examples of experimental and theoretical probabilities, such as those discussed above, and especially those that we do not expect, lead us to the importance of studying probability. You may ask, "What is true probability?" In fact, there is no such thing. Probabilities within certain limits can be determined experimentally. They may or may not coincide with the probabilities that we obtain theoretically. There are situations in which it is much easier to determine one type of probability than another. For example, it would be sufficient to find the probability of catching a cold using theoretical probability.

Calculation of experimental probabilities

Let us first consider the experimental definition of probability. The basic principle we use to calculate such probabilities is as follows.

Principle P (experimental)

If in an experiment in which n observations are made, a situation or event E occurs m times in n observations, then the experimental probability of the event is said to be P (E) = m/n.

Example 1 Sociological survey. An experimental study was conducted to determine the number of left-handed people, right-handed people and people whose both hands are equally developed. The results are shown in the graph.

a) Determine the probability that the person is right-handed.

b) Determine the probability that the person is left-handed.

c) Determine the probability that a person is equally fluent in both hands.

d) Most Professional Bowling Association tournaments are limited to 120 players. Based on the data from this experiment, how many players could be left-handed?

Solution

a)The number of people who are right-handed is 82, the number of left-handers is 17, and the number of those who are equally fluent in both hands is 1. The total number of observations is 100. Thus, the probability that a person is right-handed is P
P = 82/100, or 0.82, or 82%.

b) The probability that a person is left-handed is P, where
P = 17/100, or 0.17, or 17%.

c) The probability that a person is equally fluent in both hands is P, where
P = 1/100, or 0.01, or 1%.

d) 120 bowlers, and from (b) we can expect that 17% are left-handed. From here
17% of 120 = 0.17.120 = 20.4,
that is, we can expect about 20 players to be left-handed.

Example 2 Quality control . It is very important for a manufacturer to keep the quality of its products at a high level. In fact, companies hire quality control inspectors to ensure this process. The goal is to produce the minimum possible number of defective products. But since the company produces thousands of products every day, it cannot afford to test every product to determine whether it is defective or not. To find out what percentage of products are defective, the company tests far fewer products.
The USDA requires that 80% of the seeds sold by growers must germinate. To determine the quality of the seeds that an agricultural company produces, 500 seeds from those that were produced are planted. After this, it was calculated that 417 seeds sprouted.

a) What is the probability that the seed will germinate?

b) Do the seeds meet government standards?

Solution a) We know that out of 500 seeds that were planted, 417 sprouted. Probability of seed germination P, and
P = 417/500 = 0.834, or 83.4%.

b) Since the percentage of seeds germinated has exceeded 80% as required, the seeds meet government standards.

Example 3 Television ratings. According to statistics, there are 105,500,000 households with televisions in the United States. Every week, information about viewing programs is collected and processed. In one week, 7,815,000 households tuned in to the hit comedy series "Everybody Loves Raymond" on CBS and 8,302,000 households tuned in to the hit series "Law & Order" on NBC (Source: Nielsen Media Research). What is the probability that one household's TV is tuned to "Everybody Loves Raymond" during a given week? to "Law & Order"?

Solution The probability that the TV in one household is tuned to "Everybody Loves Raymond" is P, and
P = 7,815,000/105,500,000 ≈ 0.074 ≈ 7.4%.
The chance that the household's TV was tuned to Law & Order is P, and
P = 8,302,000/105,500,000 ≈ 0.079 ≈ 7.9%.
These percentages are called ratings.

Theoretical probability

Suppose we are conducting an experiment, such as throwing a coin or darts, drawing a card from a deck, or testing products for quality on an assembly line. Each possible result of such an experiment is called Exodus . The set of all possible outcomes is called outcome space . Event it is a set of outcomes, that is, a subset of the space of outcomes.

Example 4 Throwing darts. Suppose that in a dart throwing experiment, a dart hits a target. Find each of the following:

b) Outcome space

Solution
a) The outcomes are: hitting black (B), hitting red (R) and hitting white (B).

b) The space of outcomes is (hitting black, hitting red, hitting white), which can be written simply as (H, K, B).

Example 5 Throwing dice. A die is a cube with six sides, each with one to six dots on it.


Suppose we are throwing a die. Find
a) Outcomes
b) Outcome space

Solution
a) Outcomes: 1, 2, 3, 4, 5, 6.
b) Outcome space (1, 2, 3, 4, 5, 6).

We denote the probability that an event E occurs as P(E). For example, “the coin will land on heads” can be denoted by H. Then P(H) represents the probability that the coin will land on heads. When all outcomes of an experiment have the same probability of occurring, they are said to be equally likely. To see the differences between events that are equally likely and events that are not, consider the target shown below.

For target A, the events of hitting black, red and white are equally probable, since the black, red and white sectors are the same. However, for target B, the zones with these colors are not the same, that is, hitting them is not equally probable.

Principle P (Theoretical)

If an event E can happen in m ways out of n possible equally probable outcomes from the outcome space S, then theoretical probability events, P(E) is
P(E) = m/n.

Example 6 What is the probability of rolling a die to get a 3?

Solution There are 6 equally probable outcomes on a dice and there is only one possibility of rolling the number 3. Then the probability P will be P(3) = 1/6.

Example 7 What is the probability of rolling an even number on a die?

Solution The event is the throwing of an even number. This can happen in 3 ways (if you roll a 2, 4 or 6). The number of equally probable outcomes is 6. Then the probability P(even) = 3/6, or 1/2.

We will use a number of examples involving a standard 52 card deck. This deck consists of the cards shown in the figure below.

Example 8 What is the probability of drawing an Ace from a well-shuffled deck of cards?

Solution There are 52 outcomes (the number of cards in the deck), they are equally likely (if the deck is well shuffled), and there are 4 ways to draw an Ace, so according to the P principle, the probability
P(draw an ace) = 4/52, or 1/13.

Example 9 Suppose we choose, without looking, one ball from a bag with 3 red balls and 4 green balls. What is the probability of choosing a red ball?

Solution There are 7 equally probable outcomes of drawing any ball, and since the number of ways to draw a red ball is 3, we get
P(red ball selection) = 3/7.

The following statements are results from Principle P.

Properties of Probability

a) If event E cannot happen, then P(E) = 0.
b) If event E is certain to happen then P(E) = 1.
c) The probability that event E will occur is a number from 0 to 1: 0 ≤ P(E) ≤ 1.

For example, in a coin toss, the event that the coin lands on its edge has zero probability. The probability that a coin is either heads or tails has a probability of 1.

Example 10 Let's assume that 2 cards are drawn from a 52-card deck. What is the probability that both of them are peaks?

Solution The number n of ways to draw 2 cards from a well-shuffled deck of 52 cards is 52 C 2 . Since 13 of the 52 cards are spades, the number of ways m to draw 2 spades is 13 C 2 . Then,
P(pulling 2 peaks) = m/n = 13 C 2 / 52 C 2 = 78/1326 = 1/17.

Example 11 Suppose 3 people are randomly selected from a group of 6 men and 4 women. What is the probability that 1 man and 2 women will be selected?

Solution The number of ways to select three people from a group of 10 people is 10 C 3. One man can be chosen in 6 C 1 ways, and 2 women can be chosen in 4 C 2 ways. According to the fundamental principle of counting, the number of ways to choose 1 man and 2 women is 6 C 1. 4 C 2 . Then, the probability that 1 man and 2 women will be selected is
P = 6 C 1 . 4 C 2 / 10 C 3 = 3/10.

Example 12 Throwing dice. What is the probability of rolling a total of 8 on two dice?

Solution Each dice has 6 possible outcomes. The outcomes are doubled, meaning there are 6.6 or 36 possible ways in which the numbers on the two dice can appear. (It’s better if the cubes are different, say one is red and the other is blue - this will help visualize the result.)

The pairs of numbers that add up to 8 are shown in the figure below. There are 5 possible ways to obtain a sum equal to 8, hence the probability is 5/36.

Editor's Choice
Feat of the Hero of the Soviet Union Sergei Vasilievich Vavilov. In the army, Sergei Vasilyevich Vavilov was sent to a course for political workers. IN...

For the entire past year, policyholders must provide the Pension Fund with an RSV-1 calculation. Despite the fact that the document is not new, sometimes problems arise...

K Uznetsov Nikolai Aleksandrovich - assistant for air rifle service to the commander of the 760th Fighter Aviation Regiment of the 324th...

Pension Fund specialists and tax authorities have come to an agreement on how they will correct errors that arose during the transfer of balances for insurance...
Former first deputy head of the Main Directorate for Combating Organized Crime of the Ministry of Internal Affairs of the Russian Federation, Major General Anatoly Petukhov,...
The Battle of Stalingrad in the form of a pencil drawing can be done by small children, if you take a simple picture as a model. IN...
January 27 is the Day of Military Glory of Russia. The day of the complete liberation of Leningrad from the fascist blockade. On January 14, 1944, the...
In Soviet times, posters were one of the most common means of mass propaganda. With the help of posters, talented artists...
the first days of the siege of Leningrad On September 8, 1941, on the 79th day of the Great Patriotic War, a ring closed around Leningrad...