X 2 y 3x 1 график. Преобразования графиков с модулем


1. Дробно-линейная функция и ее график

Функция вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, называется дробно-рациональной функцией.

С понятием рациональных чисел вы уже наверняка знакомы. Аналогично рациональные функции – это функции, которые можно представить как частное двух многочленов.

Если дробно-рациональная функция представляет собой частное двух линейных функций – многочленов первой степени, т.е. функцию вида

y = (ax + b) / (cx + d), то ее называют дробно-линейной.

Заметим, что в функции y = (ax + b) / (cx + d), c ≠ 0 (иначе функция становится линейной y = ax/d + b/d) и что a/c ≠ b/d (иначе функция константа). Дробно-линейная функция определена при всех действительных числах, кроме x = -d/c. Графики дробно-линейных функций по форме не отличаются от известного вам графика y = 1/x. Кривая, являющаяся графиком функции y = 1/x, называется гиперболой . При неограниченном увеличении x по абсолютной величине функция y = 1/x неограниченно уменьшается по абсолютной величине и обе ветки графика приближаются к оси абсцисс: правая приближается сверху, а левая – снизу. Прямые, к которым приближаются ветки гиперболы, называются ее асимптотами .

Пример 1.

y = (2x + 1) / (x – 3).

Решение.

Выделим целую часть: (2x + 1) / (x – 3) = 2 + 7/(x – 3).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 3 единичных отрезка вправо, растяжением вдоль оси Oy в 7 раз и сдвигом на 2 единичных отрезка вверх.

Любую дробь y = (ax + b) / (cx + d) можно записать аналогичным образом, выделив «целую часть». Следовательно, графики всех дробно-линейных функций есть гиперболы, различным образом сдвинутые вдоль координатных осей и растянутые по оси Oy.

Для построения графика какой-нибудь произвольной дробно-линейной функции совсем не обязательно дробь, задающую эту функцию, преобразовывать. Поскольку мы знаем, что график есть гипербола, будет достаточно найти прямые, к которым приближаются ее ветки – асимптоты гиперболы x = -d/c и y = a/c.

Пример 2.

Найти асимптоты графика функции y = (3x + 5)/(2x + 2).

Решение.

Функция не определена, при x = -1. Значит, прямая x = -1 служит вертикальной асимптотой. Для нахождения горизонтальной асимптоты, выясним, к чему приближаются значения функции y(x), когда аргумент x возрастает по абсолютной величине.

Для этого разделим числитель и знаменатель дроби на x:

y = (3 + 5/x) / (2 + 2/x).

При x → ∞ дробь будет стремиться к 3/2. Значит, горизонтальная асимптота – это прямая y = 3/2.

Пример 3.

Построить график функции y = (2x + 1)/(x + 1).

Решение.

Выделим у дроби «целую часть»:

(2x + 1) / (x + 1) = (2x + 2 – 1) / (x + 1) = 2(x + 1) / (x + 1) – 1/(x + 1) =

2 – 1/(x + 1).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 1 единицу влево, симметричным отображением относительно Ox и сдвигом на 2 единичных отрезка вверх по оси Oy.

Область определения D(y) = (-∞; -1)ᴗ(-1; +∞).

Область значений E(y) = (-∞; 2)ᴗ(2; +∞).

Точки пересечения с осями: c Oy: (0; 1); c Ox: (-1/2; 0). Функция возрастает на каждом из промежутков области определения.

Ответ: рисунок 1.

2. Дробно-рациональная функция

Рассмотрим дробно-рациональную функцию вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, степени выше первой.

Примеры таких рациональных функций:

y = (x 3 – 5x + 6) / (x 7 – 6) или y = (x – 2) 2 (x + 1) / (x 2 + 3).

Если функция y = P(x) / Q(x) представляет собой частное двух многочленов степени выше первой, то ее график будет, как правило, сложнее, и построить его точно, со всеми деталями бывает иногда трудно. Однако, часто достаточно применить приемы, аналогичные тем, с которыми мы уже познакомились выше.

Пусть дробь – правильная (n < m). Известно, что любую несократимую рациональную дробь можно представить, и притом единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

P(x)/Q(x) = A 1 /(x – K 1) m1 + A 2 /(x – K 1) m1-1 + … + A m1 /(x – K 1) + …+

L 1 /(x – K s) ms + L 2 /(x – K s) ms-1 + … + L ms /(x – K s) + …+

+ (B 1 x + C 1) / (x 2 +p 1 x + q 1) m1 + … + (B m1 x + C m1) / (x 2 +p 1 x + q 1) + …+

+ (M 1 x + N 1) / (x 2 +p t x + q t) m1 + … + (M m1 x + N m1) / (x 2 +p t x + q t).

Очевидно, что график дробно-рациональной функции можно получить как сумму графиков элементарных дробей.

Построение графиков дробно-рациональных функций

Рассмотрим несколько способов построения графиков дробно-рациональной функции.

Пример 4.

Построить график функции y = 1/x 2 .

Решение.

Используем график функции y = x 2 для построения графика y = 1/x 2 и воспользуемся приемом «деления» графиков.

Область определения D(y) = (-∞; 0)ᴗ(0; +∞).

Область значений E(y) = (0; +∞).

Точек пересечения с осями нет. Функция четная. Возрастает при все х из интервала (-∞; 0), убывает при x от 0 до +∞.

Ответ: рисунок 2.

Пример 5.

Построить график функции y = (x 2 – 4x + 3) / (9 – 3x).

Решение.

Область определения D(y) = (-∞; 3)ᴗ(3; +∞).

y = (x 2 – 4x + 3) / (9 – 3x) = (x – 3)(x – 1) / (-3(x – 3)) = -(x – 1)/3 = -x/3 + 1/3.

Здесь мы использовали прием разложения на множители, сокращения и приведения к линейной функции.

Ответ: рисунок 3.

Пример 6.

Построить график функции y = (x 2 – 1)/(x 2 + 1).

Решение.

Область определения D(y) = R. Так как функция четная, то график симметричен относительно оси ординат. Прежде чем строить график, опять преобразуем выражение, выделив целую часть:

y = (x 2 – 1)/(x 2 + 1) = 1 – 2/(x 2 + 1).

Заметим, что выделение целой части в формуле дробно-рациональной функции является одним из основных при построении графиков.

Если x → ±∞, то y → 1, т.е. прямая y = 1 является горизонтальной асимптотой.

Ответ: рисунок 4.

Пример 7.

Рассмотрим функцию y = x/(x 2 + 1) и попробуем точно найти наибольшее ее значение, т.е. самую высокую точку правой половины графика. Чтобы точно построить этот график, сегодняшних знаний недостаточно. Очевидно, что наша кривая не может «подняться» очень высоко, т.к. знаменатель довольно быстро начинает «обгонять» числитель. Посмотрим, может ли значение функции равняться 1. Для этого нужно решить уравнение x 2 + 1 = x, x 2 – x + 1 = 0. Это уравнение не имеет действительных корней. Значит, наше предположение не верно. Чтобы найти самое большое значение функции, надо узнать, при каком самом большом А уравнение А = x/(x 2 + 1) будет иметь решение. Заменим исходное уравнение квадратным: Аx 2 – x + А = 0. Это уравнение имеет решение, когда 1 – 4А 2 ≥ 0. Отсюда находим наибольшее значение А = 1/2.

Ответ: рисунок 5, max y(x) = ½.

Остались вопросы? Не знаете, как строить графики функций?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Построение графиков функций, содержащих модули, обычно вызывает немалые затруднения у школьников. Однако, все не так плохо. Достаточно запомнить несколько алгоритмов решения таких задач, и вы сможете без труда построить график даже самой на вид сложной функции. Давайте разберемся, что же это за алгоритмы.

1. Построение графика функции y = |f(x)|

Заметим, что множество значений функций y = |f(x)| : y ≥ 0. Таким образом, графики таких функций всегда расположены полностью в верхней полуплоскости.

Построение графика функции y = |f(x)| состоит из следующих простых четырех этапов.

1) Построить аккуратно и внимательно график функции y = f(x).

2) Оставить без изменения все точки графика, которые находятся выше оси 0x или на ней.

3) Часть графика, которая лежит ниже оси 0x, отобразить симметрично относительно оси 0x.

Пример 1. Изобразить график функции y = |x 2 – 4x + 3|

1) Строим график функции y = x 2 – 4x + 3. Очевидно, что график данной функции – парабола. Найдем координаты всех точек пересечения параболы с осями координат и координаты вершины параболы.

x 2 – 4x + 3 = 0.

x 1 = 3, x 2 = 1.

Следовательно, парабола пересекает ось 0x в точках (3, 0) и (1, 0).

y = 0 2 – 4 · 0 + 3 = 3.

Следовательно, парабола пересекает ось 0y в точке (0, 3).

Координаты вершины параболы:

x в = -(-4/2) = 2, y в = 2 2 – 4 · 2 + 3 = -1.

Следовательно, точка (2, -1) является вершиной данной параболы.

Рисуем параболу, используя полученные данные (рис. 1)

2) Часть графика, лежащую ниже оси 0x, отображаем симметрично относительно оси 0x.

3) Получаем график исходной функции (рис. 2 , изображен пунктиром).

2. Построение графика функции y = f(|x|)

Заметим, что функции вида y = f(|x|) являются четными:

y(-x) = f(|-x|) = f(|x|) = y(x). Значит, графики таких функций симметричны относительно оси 0y.

Построение графика функции y = f(|x|) состоит из следующей несложной цепочки действий.

1) Построить график функции y = f(x).

2) Оставить ту часть графика, для которой x ≥ 0, то есть часть графика, расположенную в правой полуплоскости.

3) Отобразить указанную в пункте (2) часть графика симметрично оси 0y.

4) В качестве окончательного графика выделить объединение кривых, полученных в пунктах (2) и (3).

Пример 2. Изобразить график функции y = x 2 – 4 · |x| + 3

Так как x 2 = |x| 2 , то исходную функцию можно переписать в следующем виде: y = |x| 2 – 4 · |x| + 3. А теперь можем применять предложенный выше алгоритм.

1) Строим аккуратно и внимательно график функции y = x 2 – 4 · x + 3 (см. также рис. 1 ).

2) Оставляем ту часть графика, для которой x ≥ 0, то есть часть графика, расположенную в правой полуплоскости.

3) Отображаем правую часть графика симметрично оси 0y.

(рис. 3) .

Пример 3. Изобразить график функции y = log 2 |x|

Применяем схему, данную выше.

1) Строим график функции y = log 2 x (рис. 4) .

3. Построение графика функции y = |f(|x|)|

Заметим, что функции вида y = |f(|x|)| тоже являются четными. Действительно, y(-x) = y = |f(|-x|)| = y = |f(|x|)| = y(x), и поэтому, их графики симметричны относительно оси 0y. Множество значений таких функций: y 0. Значит, графики таких функций расположены полностью в верхней полуплоскости.

Чтобы построить график функции y = |f(|x|)|, необходимо:

1) Построить аккуратно график функции y = f(|x|).

2) Оставить без изменений ту часть графика, которая находится выше оси 0x или на ней.

3) Часть графика, расположенную ниже оси 0x, отобразить симметрично относительно оси 0x.

4) В качестве окончательного графика выделить объединение кривых, полученных в пунктах (2) и (3).

Пример 4. Изобразить график функции y = |-x 2 + 2|x| – 1|.

1) Заметим, что x 2 = |x| 2 . Значит, вместо исходной функции y = -x 2 + 2|x| – 1

можно использовать функцию y = -|x| 2 + 2|x| – 1, так как их графики совпадают.

Строим график y = -|x| 2 + 2|x| – 1. Для этого применяем алгоритм 2.

a) Строим график функции y = -x 2 + 2x – 1 (рис. 6) .

b) Оставляем ту часть графика, которая расположена в правой полуплоскости.

c) Отображаем полученную часть графика симметрично оси 0y.

d) Полученный график изображен на рисунке пунктиром (рис. 7) .

2) Выше оси 0х точек нет, точки на оси 0х оставляем без изменения.

3) Часть графика, расположенную ниже оси 0x, отображаем симметрично относительно 0x.

4) Полученный график изображен на рисунке пунктиром (рис. 8) .

Пример 5. Построить график функции y = |(2|x| – 4) / (|x| + 3)|

1) Сначала необходимо построить график функции y = (2|x| – 4) / (|x| + 3). Для этого возвращаемся к алгоритму 2.

a) Аккуратно строим график функции y = (2x – 4) / (x + 3) (рис. 9) .

Заметим, что данная функция является дробно-линейной и ее график есть гипербола. Для построения кривой сначала необходимо найти асимптоты графика. Горизонтальная – y = 2/1 (отношение коэффициентов при x в числителе и знаменателе дроби), вертикальная – x = -3.

2) Ту часть графика, которая находится выше оси 0x или на ней, оставим без изменений.

3) Часть графика, расположенную ниже оси 0x, отобразим симметрично относительно 0x.

4) Окончательный график изображен на рисунке (рис. 11) .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

«Натуральный логарифм» - 0,1. Натуральные логарифмы. 4. «Логарифмический дартс». 0,04. 7. 121.

«Степенная функция 9 класс» - У. Кубическая парабола. У = х3. 9 класс учитель Ладошкина И.А. У = х2. Гипербола. 0. У = хn, у = х-n где n – заданное натуральное число. Х. Показатель – четное натуральное число (2n).

«Квадратичная функция» - 1 Определение квадратичной функции 2 Свойства функции 3 Графики функции 4 Квадратичные неравенства 5 Вывод. Свойства: Неравенства: Подготовил ученик 8А класса Герлиц Андрей. План: График: -Промежутки монотонности при а > 0 при а < 0. Квадратичная функция. Квадратичные функции используются уже много лет.

«Квадратичная функция и её график» - Решение.у=4x А(0,5:1) 1=1 А-принадлежит. При а=1 формула у=аx принимает вид.

«8 класс квадратичная функция» - 1) Построить вершину параболы. Построение графика квадратичной функции. x. -7. Построить график функции. Алгебра 8 класс Учитель 496 школы Бовина Т. В. -1. План построения. 2) Построить ось симметрии x=-1. y.

1. Дробно-линейная функция и ее график

Функция вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, называется дробно-рациональной функцией.

С понятием рациональных чисел вы уже наверняка знакомы. Аналогично рациональные функции – это функции, которые можно представить как частное двух многочленов.

Если дробно-рациональная функция представляет собой частное двух линейных функций – многочленов первой степени, т.е. функцию вида

y = (ax + b) / (cx + d), то ее называют дробно-линейной.

Заметим, что в функции y = (ax + b) / (cx + d), c ≠ 0 (иначе функция становится линейной y = ax/d + b/d) и что a/c ≠ b/d (иначе функция константа). Дробно-линейная функция определена при всех действительных числах, кроме x = -d/c. Графики дробно-линейных функций по форме не отличаются от известного вам графика y = 1/x. Кривая, являющаяся графиком функции y = 1/x, называется гиперболой . При неограниченном увеличении x по абсолютной величине функция y = 1/x неограниченно уменьшается по абсолютной величине и обе ветки графика приближаются к оси абсцисс: правая приближается сверху, а левая – снизу. Прямые, к которым приближаются ветки гиперболы, называются ее асимптотами .

Пример 1.

y = (2x + 1) / (x – 3).

Решение.

Выделим целую часть: (2x + 1) / (x – 3) = 2 + 7/(x – 3).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 3 единичных отрезка вправо, растяжением вдоль оси Oy в 7 раз и сдвигом на 2 единичных отрезка вверх.

Любую дробь y = (ax + b) / (cx + d) можно записать аналогичным образом, выделив «целую часть». Следовательно, графики всех дробно-линейных функций есть гиперболы, различным образом сдвинутые вдоль координатных осей и растянутые по оси Oy.

Для построения графика какой-нибудь произвольной дробно-линейной функции совсем не обязательно дробь, задающую эту функцию, преобразовывать. Поскольку мы знаем, что график есть гипербола, будет достаточно найти прямые, к которым приближаются ее ветки – асимптоты гиперболы x = -d/c и y = a/c.

Пример 2.

Найти асимптоты графика функции y = (3x + 5)/(2x + 2).

Решение.

Функция не определена, при x = -1. Значит, прямая x = -1 служит вертикальной асимптотой. Для нахождения горизонтальной асимптоты, выясним, к чему приближаются значения функции y(x), когда аргумент x возрастает по абсолютной величине.

Для этого разделим числитель и знаменатель дроби на x:

y = (3 + 5/x) / (2 + 2/x).

При x → ∞ дробь будет стремиться к 3/2. Значит, горизонтальная асимптота – это прямая y = 3/2.

Пример 3.

Построить график функции y = (2x + 1)/(x + 1).

Решение.

Выделим у дроби «целую часть»:

(2x + 1) / (x + 1) = (2x + 2 – 1) / (x + 1) = 2(x + 1) / (x + 1) – 1/(x + 1) =

2 – 1/(x + 1).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 1 единицу влево, симметричным отображением относительно Ox и сдвигом на 2 единичных отрезка вверх по оси Oy.

Область определения D(y) = (-∞; -1)ᴗ(-1; +∞).

Область значений E(y) = (-∞; 2)ᴗ(2; +∞).

Точки пересечения с осями: c Oy: (0; 1); c Ox: (-1/2; 0). Функция возрастает на каждом из промежутков области определения.

Ответ: рисунок 1.

2. Дробно-рациональная функция

Рассмотрим дробно-рациональную функцию вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, степени выше первой.

Примеры таких рациональных функций:

y = (x 3 – 5x + 6) / (x 7 – 6) или y = (x – 2) 2 (x + 1) / (x 2 + 3).

Если функция y = P(x) / Q(x) представляет собой частное двух многочленов степени выше первой, то ее график будет, как правило, сложнее, и построить его точно, со всеми деталями бывает иногда трудно. Однако, часто достаточно применить приемы, аналогичные тем, с которыми мы уже познакомились выше.

Пусть дробь – правильная (n < m). Известно, что любую несократимую рациональную дробь можно представить, и притом единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

P(x)/Q(x) = A 1 /(x – K 1) m1 + A 2 /(x – K 1) m1-1 + … + A m1 /(x – K 1) + …+

L 1 /(x – K s) ms + L 2 /(x – K s) ms-1 + … + L ms /(x – K s) + …+

+ (B 1 x + C 1) / (x 2 +p 1 x + q 1) m1 + … + (B m1 x + C m1) / (x 2 +p 1 x + q 1) + …+

+ (M 1 x + N 1) / (x 2 +p t x + q t) m1 + … + (M m1 x + N m1) / (x 2 +p t x + q t).

Очевидно, что график дробно-рациональной функции можно получить как сумму графиков элементарных дробей.

Построение графиков дробно-рациональных функций

Рассмотрим несколько способов построения графиков дробно-рациональной функции.

Пример 4.

Построить график функции y = 1/x 2 .

Решение.

Используем график функции y = x 2 для построения графика y = 1/x 2 и воспользуемся приемом «деления» графиков.

Область определения D(y) = (-∞; 0)ᴗ(0; +∞).

Область значений E(y) = (0; +∞).

Точек пересечения с осями нет. Функция четная. Возрастает при все х из интервала (-∞; 0), убывает при x от 0 до +∞.

Ответ: рисунок 2.

Пример 5.

Построить график функции y = (x 2 – 4x + 3) / (9 – 3x).

Решение.

Область определения D(y) = (-∞; 3)ᴗ(3; +∞).

y = (x 2 – 4x + 3) / (9 – 3x) = (x – 3)(x – 1) / (-3(x – 3)) = -(x – 1)/3 = -x/3 + 1/3.

Здесь мы использовали прием разложения на множители, сокращения и приведения к линейной функции.

Ответ: рисунок 3.

Пример 6.

Построить график функции y = (x 2 – 1)/(x 2 + 1).

Решение.

Область определения D(y) = R. Так как функция четная, то график симметричен относительно оси ординат. Прежде чем строить график, опять преобразуем выражение, выделив целую часть:

y = (x 2 – 1)/(x 2 + 1) = 1 – 2/(x 2 + 1).

Заметим, что выделение целой части в формуле дробно-рациональной функции является одним из основных при построении графиков.

Если x → ±∞, то y → 1, т.е. прямая y = 1 является горизонтальной асимптотой.

Ответ: рисунок 4.

Пример 7.

Рассмотрим функцию y = x/(x 2 + 1) и попробуем точно найти наибольшее ее значение, т.е. самую высокую точку правой половины графика. Чтобы точно построить этот график, сегодняшних знаний недостаточно. Очевидно, что наша кривая не может «подняться» очень высоко, т.к. знаменатель довольно быстро начинает «обгонять» числитель. Посмотрим, может ли значение функции равняться 1. Для этого нужно решить уравнение x 2 + 1 = x, x 2 – x + 1 = 0. Это уравнение не имеет действительных корней. Значит, наше предположение не верно. Чтобы найти самое большое значение функции, надо узнать, при каком самом большом А уравнение А = x/(x 2 + 1) будет иметь решение. Заменим исходное уравнение квадратным: Аx 2 – x + А = 0. Это уравнение имеет решение, когда 1 – 4А 2 ≥ 0. Отсюда находим наибольшее значение А = 1/2.

Ответ: рисунок 5, max y(x) = ½.

Остались вопросы? Не знаете, как строить графики функций?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Выбор редакции
По указу Президента, наступающий 2017 год будет годом экологии, а также особо охраняемых природных объектов. Подобное решение было...

Обзорывнешней торговли России Торговля между Россией и КНДР (Северной Кореей) в 2017 г. Подготовлен сайтом Внешняя Торговля России на...

Уроки № 15-16 ОБЩЕСТВОЗНАНИЕ 11 класс Учитель обществознания Касторенской средней общеобразовательной школы № 1 Данилов В. Н. Ф инансы...

1 слайд 2 слайд План урока Введение Банковская система Финансовые институты Инфляция: виды, причины и последствия Заключение 3...
Иногда некоторым из нас приходится слышать о такой национальности, как аварец. Что за нация - аварцы?Это коренное проживающее в восточной...
Артриты, артрозы и прочие заболевания суставов для большинства людей, особенно в пожилом возрасте, являются самой настоящей проблемой. Их...
Территориальные единичные расценкина строительные и специальные строительные работы ТЕР-2001, предназначены для применения при...
Против политики «военного коммунизма» с оружием в ру-ках поднялись красноармейцы Кронштадта - крупнейшей военно-мор-ской базы Балтийского...
Даосская оздоровительная системаДаосскую оздоровительную систему создавало не одно поколение мудрецов, которые тщательнейшим образом...