Батарея гальванических элементов.


БАТАРЕИ ГАЛЬВАНИЧЕСКИЕ - группы электрически соединенных между собой гальванических элементов, которые вырабатывают электроэнергию за счет хим. реакции, происходящей между активными материалами электродов. В батареи гальванической чаще всего используются гальванические элементы, у которых положительный электрод изготовлен из смеси двуокиси марганца и графита, а отрицательный - из цинка. В качестве электролита обычно используется раствор хлористого аммония (нашатыря) и других хлористых солей. Такие элементы называются марганцево-цинковыми.

Рис. 1. Сухой элемент стаканчикового типа: 1 - отрицательный электрод (цинк), 2 - картонный футляр, 3 -токоотводы, 4 - колпачок, 5 - положительный электрод, 6 - слой электролита (пасты), 7 - смола, 8 - картонная шайба, 9 - изоляционная прокладка, 10 - стеклянная трубка (газоотвод)

Иногда в состав положительного электрода, кроме двуокиси марганца и графита, добавляется активированный уголь, который поглощает кислород из окружающей атмосферы, чем позволяет использовать его в хим. реакции. Такие элементы называются марганцево - воздушно - цинковыми. Они отличаются большей емкостью и меньшей себестоимостью. Для специальных целей применяются угольно - цинковые и железо - угольные наливные элементы, обладающие большим постоянством напряжения. Ввиду неудобства эксплуатации наливных элементов с жидким электролитом последний при помощи муки, крахмала, картона или других наполнителей переводится в вязкое состояние, благодаря чему он теряет свою текучесть и не выливается из элемента при любом положении. Такие элементы получили название сухих.

Различают два основных типа сухих элементов: стаканчиковый и галетный. У стаканчикового элемента (рис. 1) отрицательный электрод (цинковый полюс) выполнен в виде цилиндрического цельнотянутого или имеющего продольный шов (паяный, сварной, вальцованный) прямоугольного стакана. Положительный электрод представляет собой цилиндр или призму, напрессованную на угольный стержень, служащий токоотводом. Положительный электрод помещается внутри отрицательного, а пространство между ними заполняется сгущенным электролитом. У галетного элемента (рис.2) электроды имеют вид пластинок, которые разделены пропитанной электролитом картонной диафрагмой. Все детали стянуты упругим винилхлоридным ободом (кольцом). Токоотводом служит непроницаемый для электролита слой электропроводной массы, нанесенный на внешнюю сторону цинкового электрода. Марганцево - воздушно - цинковые элементы выпускаются только стаканчикового типа.

Рис. 2. Сухой элемент галетного типа: 1 - отрицательный электрод (цинк) с электропроводным слоем, 2 - положительный электрод, 3 - картонные диафрагмы, пропитанные электролитом, 4 - бумага обертки положительного электрода, 5 - хлорвиниловое кольцо

Основными показателями элемента являются его электродвижущая сила (э. д. с.) и напряжение, величина которых измеряется вольтметром (см.), в первом случае - при отсутствии нагрузочного сопротивления, во втором - при подключении обусловленного стандартом нагрузочного сопротивления. Э. д. с. марганцево - цинковых элементов колеблется от 1,5 до 1,8 В, э. д. с. марганцево - воздушно - цинковых элементов равна 1,4 В. Величина напряжения элемента всегда меньше э. д. с., разница между ними возрастает с уменьшением нагрузочного сопротивления. Важнейшими параметрами батарей гальванических являются также количество отдаваемой ими электроэнергии и способность сохранять ее на протяжении длительного времени (сохранность). Количество отдаваемой энергии измеряется либо продолжительностью работы элемента в часах, либо его электрической емкостью в а - час. Поскольку напряжение элемента при разряде падает, то в техн. документации всегда оговаривается нижний предел напряжения (конечное напряжение), определяющий нижнюю границу его работоспособности. При заданном конечном напряжении электрическая емкость элемента, а значит и продолжительность его работы зависят также от темп-ры и величины нагрузочного сопротивления (см. табл. 1), а также периодичности разряда.

Емкость батарей гальванических увеличивается с увеличением нагрузочного сопротивления и повышением темп-ры. Наиболее низкая темп-ра, при которой возможна работа элементов: для марганцево-цинковых -20°, для марганцево - воздушно - цинковых -5°. Периодичность разряда характеризуется чередованием и длительностью периодов разряда и отдыха элемента. Как правило, марганцево - цинковые элементы при прерывистом разряде отдают большую емкость, чем при непрерывном, а марганцево - воздушно - цинковые элементы, наоборот, меньшую.

Сохранностью батарей гальванических (элемента) называется срок от момента изготовления до начала эксплуатации, в продолжении которого изделие сохраняет свою работоспособность. Величина остающейся емкости (или продолжительности работы) оговаривается стандартом и обычно составляет 60-75% первоначальной.

Срок сохранности, указываемый на этикетке, является минимальным и почти всегда батареи гальванические и элементы могут быть использованы еще в течение некоторого времени. Годность их в этом случае определяется по напряжению.

Соединение элементов в батареи гальванические может быть последовательное, параллельное и смешанное. При последовательном соединении положительный полюс одного элемента присоединяется к отрицательному полюсу последующего элемента и т. д. (рис.3).

Рис. 3. Схема последовательного соединения элементов

Рис. 4. Схема параллельного соединения элементов батареи

Рис. 5. Смешанное соединение элементов батареи

Такое соединение элементов применяется для создания более высокого напряжения батареи гальванической, которое в этом случае прямо пропорционально числу последовательно соединенных элементов. Емкость батареи гальванической при этом не изменяется и равна емкости отдельного элемента. Параллельное соединение осуществляется путем соединения между собой, с одной стороны, всех положительных полюсов элементов, с другой - отрицательных (рис. 4). При этом возрастает емкость батареи гальванической, а напряжение ее остается равным напряжению отдельного элемента. При смешанном соединении применяются оба указанных выше способа: собирается несколько одинаковых групп с последовательным соединением элементов, которые соединяются между собой параллельно (рис. 5). При этом возрастают соответственно и напряжение и емкость.

В зависимости от назначения батареи гальванической подразделяются на анодные, сеточные, накальные и фонарные.

Анодные батареи гальванические (рис. 6) предназначаются для питания анодных цепей радиоприемников.

Рис. 6. Батарея БС-Г-70

Их напряжение сравнительно высоко - от 60 до 120 В. Используются они для небольшого тока - от 3 до 12 ма. Обычно эти батареи гальванические имеют дополнительные токоотводы в виде гнезда в панели или мягких проводов, которые позволяют использовать сначала часть батареи гальванической и подключать остальную ее часть по мере падения напряжения. Этот режим носит название секционного разряда и позволяет в известных пределах увеличить продолжительность службы батареи гальванической.

Сеточные батареи гальванические предназначаются для создания напряжения смещения на сетках радиоламп.

Рис. 7. Батарея БСГ-60-С-8

В них применяется последовательное соединение. Напряжение от 4,5 до 12,0 В. Расход тока не превышает 3 ма. Монтируются в одном футляре с батареями гальваническими анодными (рис. 7) и составляются из одинаковых с ними элементов.

Накальные батареи гальванические (рис. 8) предназначены для питания накальных нитей радиоламп.

Рис. 8. Батарея БНС-МВД-500

Для стационарных батарейных радиоприемников ("Родина", "Искра" и т. п.) накальные батареи гальванические с целью создания большей емкости составляются из четырех параллельно соединенных марганцево - воздушно - цинковых элементов большого размера. Напряжение их равно напряжению одного элемента, а расход тока от 0,3 до 0,5 а. В накальных батареях гальванических переносных батарейных радиоприемников применяется параллельное и смешанное соединение небольших элементов. Для батарейного радиоприемника "Тула" пром-стью выпускается комплект питания, в специальном футляре, состоящий из анодной и накальной батареи гальванической (рис. 9).

Рис. 9. Комплект - питания для радиоприемника "Тула"

Фонарные батареи гальванические предназначаются для питания лампочек карманных фонарей. Они характеризуются большим расходом тока (от 150 до 280 а) при небольшом напряжении (3,0- 4,5 в) и малыми габаритами. Наибольшее распространение получили батареи гальванические типа КБС-Л-0,50 (рис. 10), состоящие из трех последовательно соединенных элементов. Для фонарей круглого сечения и измерительных приборов (омметров, авометров и т. п.) пром-стью выпускаются элементы цилиндрической формы типа ФБС, последовательное соединение между которыми при необходимости осуществляется непосредственно при вложении их в корпус фонаря (прибора).

Рис. 10. Батарея для карманного фонаря КБС-Л-0,50

Условные обозначения элементов обычно состоят из четырех частей. Начальная цифра указывает габариты (в мм): №2 - 40х40х100, №3-55x55x130, № 6 - 80x80x175; буквы - С - сухой, Л - летний, X - хладостойкий; следующие затем цифры указывают емкость элемента. Так, 3С-Л-30 означает: элемент № 3, сухой, летний, емкостью 30 а-час. Наименование батарей гальванических, начинающееся с буквенных обозначений, состоит из 4-5 частей, имеющих следующие значения: Б - батарея, А - анодная, Н - накальная, С - сухая, Г - галетная, Ф - фонарная, К - карманная. Число после букв у анодных батарей гальванических показывает напряжение, у накальных - емкость. Однако иногда в обозначении батарей гальванических анодных буква А опускается, а в конце обозначения добавляется второй численный показатель - емкость батареи гальванической. Наименования батарей гальванических, начинающиеся с цифр, имеют следующие значения: начальная цифра обозначает напряжение, конечная - емкость, буквы: МЦ - марганцевоцинковая система, В - указывает на использование кислорода воздуха, Н - накальная, А - анодная, Т - телефонная, С - для слуховых аппаратов, П - панель. Батареям гальваническим, предназначенным для питания радиоприемников, кроме того, даны товарные наименования. Маркируются батареи гальванические путем наклейки этикетки с указанием: наименования или товарного знака предприятия - изготовителя, условного обозначения батарей гальванических, номинального напряжения, начальной емкости, гарантийного срока хранения и емкости в конце срока хранения.

Годность батарей гальванических и элементов определяется внешним осмотром и замерением напряжения на токоотводах. При осмотре следует убедиться в целости токоотводов и отсутствии наружных дефектов: поломок, разрушения заливочной смолки (мастики), повреждений и промокания футляра. Напряжение проверяется вольтметром; оно не должно быть ниже величин, указанных в табл. 2. Батареи гальванические упаковываются в деревянные ящики весом брутто 65-80 кг, выложенные внутри влагонепроницаемой бумагой, и отделяются от их стенок слоем сухой стружки или другого упаковочного материала. Батареи гальванические необходимо хранить в сухом и прохладном месте. Повышенная влажность в помещении для хранения, как и повышенная темп-ра, резко снижают срок их сохранности. Низкая темп-ра не опасна для батарей гальванических: после отогревания они полностью восстанавливают свои свойства. Батареи гальванические изготовляются предприятиями Главаккумуляторпрома Министерства электротехнической промышленности СССР.

Лит.: Сочеванов В.Г., Гальванические элементы, М., 1951; Морозов ГГ. и Гантмав С.А., Химические источники тока для питания средств связи, М., 1949; Сводный каталог на химические источники тока, М., 1950.

Гальванический элемент

Схема гальванического элемента Даниэля-Якоби

Гальвани́ческий элеме́нт - , основанный на взаимодействии двух металлов и (или) их оксидов в электролите , приводящем к возникновению в замкнутой цепи электрического тока. Назван в честь Луиджи Гальвани .

Явление возникновения электрического тока при контакте разных металлов было открыто итальянским физиологом , профессором медицины Болонского университета Луиджи Гальвани в 1786 году. Гальвани описал сокращения мышц задних лапок свежепрепарированной лягушки, закрепленных на медных крючках, при прикосновении стального скальпеля . Наблюдения были истолкованы первооткрывателем как проявление «животного электричества».

Электрохимические генераторы (топливные элементы) - это элементы, в которых происходит превращение химической энергии в электрическую. Окислитель и восстановитель хранятся вне элемента, в процессе работы непрерывно и раздельно подаются к электродам. В процессе работы топливного элемента электродые не расходуются. Восстановителем является водород (H 2), метанол (CH 3 OH), метан (CH 4) в жидком или газообразном состоянии. Окислителем обычно является кислород воздуха или чистый. В кислородно-водородном топливном элементе со щелочным электролитом происходит превращение химической энергии в электрическую. Энергоустановки применяются на космических кораблях, они обеспечивают энергией космический корабль и космонавтов.

Применение

  • Батарейки используются в системе сигнализации, фонарях, часах, калькуляторах, аудиосистемах, игрушках, радио, автооборудовании, пультах дистанционного управления.
  • Аккумуляторы используются для запуска двигателей машин, возможно так же и применение в качестве временных источников электроэнергии в местах, удаленных от населенных пунктов.
  • Топливные элементы применяются в производстве электрической энергии (на электрических станциях), аварийных источниках энергии, автономном электроснабжении, транспорте, бортовом питании, мобильных устройствах.

См. также

Литература

  • Ахметов Н.С. Общая и неорганическая химия
  • Аксенович Л. А. Физика в средней школе: Теория. Задания.

Ссылки

Гальванический элемент - это химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, названный в честь итальянского учёного Луиджи Гальвани.

Позднее учёный собрал батарею из медно-цинковых элементов, которая впоследствии была названа Вольтовым столбом (см. рисунок). Он представлял собой несколько десяткой цинковых и медных кружков, сложенных попарно и разделённых сукном, пропитанным кислотой. Это изобретение впоследствии использовали другие учёные в своих исследованиях. Так, например, в 1802 году русский академик В. В. Петров сконструировал гигантскую батарею из 2100 элементов, которая создавала напряжение около 2500 вольт и использовалась для получения мощной электрической дуги, которая создавала столь высокую температуру, что могла плавить металлы.

Существуют гальванические элементы и других конструкций. Рассмотрим ещё один медно-цинковый гальванический элемент, но работающий за счет энергии химической реакции между цинком и раствором сульфата меди (элемент Якоби-Даниэля). Этот элемент состоит из медной пластины, погруженной в раствор сульфата меди, и цинковой пластины, погруженной в раствор сульфата цинка (см. рисунок). Оба раствора соприкасаются друг с другом, но для предупреждения смешивания они разделены перегородкой-мембраной, изготовленной из пористого материала.

Ещё одна разновидность гальванических элементов - так называемые «сухие» марганец-цинковые элементы Лекланше (см. рисунок). Вместо жидкого электролита в таком элементе используется гелеобразная паста из нашатыря и крахмала. Чтобы влага испарялась как можно меньше, верх такого элемента заливается воском или смолой с небольшим отверстием для выхода газов. Обычно элементы Лекланше изготавливаются в цилиндрических стаканчиках, которые одновременно служат и отрицательным электродом и сосудом.
Все химические источники тока (гальванические элементы и батареи из них) делятся на две группы - первичные (одноразовые) и вторичные (многоразовые или обратимые). В первичных источниках тока (в просторечии - батарейках) химические процессы протекают необратимо, поэтому их заряд нельзя восстановить. К вторичным химическим источникам тока относят аккумуляторы, их заряд можно восстановить. Для широко распространённых аккумуляторов цикл заряд-разряд можно повторять около 1000 раз.

Батарейки имеют различное напряжение и ёмкость. К примеру, традиционные щелочные батарейки имеют номинальное напряжение около 1,5 В, а более современные литиевые - около 3 В. Электрическая ёмкость зависит от множества факторов: количества элементов в батарее, уровня зарядки, температуры окружающей среды, тока отсечки (при котором устройство не работает даже при имеющемся заряде). Например, батарейка, которая уже не работает в фотоаппарате, зачастую продолжает работать в часах или пультах управления.
Количество электричества (заряд) в батарейках измеряется в ампер-часах. Например, если заряд батарейки равен 1 ампер-часу, а электрический прибор, который она питает, требует тока 200 мА, то срок действия батарейки вычислится так: 1 А·ч / 0,2 А = 5 часов.
Благодаря техническому прогрессу увеличилось разнообразие миниатюрных устройств, работающих от батареек. Для многих из них потребовались более мощные элементы питания, при этом достаточно компактные. Литиевые батарейки стали ответом на такую потребность: долгий срок хранения, высокая надёжность и отличная работоспособность в широком диапазоне температур. На сегодняшний день самыми передовыми являются литий-ионные источники тока. Потенциал данной технологии ещё не раскрыт полностью, но ближайшие перспективы связаны с ними.

Особую ценность в технике представляют никель-кадмиевые аккумуляторы, изобретённые еще в 1899 году шведским учёным В.Юнгнером. Но только к середине XX века инженеры пришли к почти современной схеме таких герметичных аккумуляторов. Благодаря компактности и автономности, аккумуляторные батареи используются в автомобилях, поездах, компьютерах, телефонах, фотоаппаратах, видеокамерах, калькуляторах и др.
Основными характеристиками аккумулятора являются ёмкость и предельная сила тока. Ёмкость батареи в ампер-часах равна произведению предельного тока на продолжительность разрядки. Например, если батарея может давать ток силой 80 мА в течение 10 часов, то ёмкость: 80 мА · 10 ч = 800 мА·ч (или, в международных обозначениях 800 mAh, см. рисунок).

Кузнецова Алла Викторовна (г. Самара)

Министерство образования и науки Российской Федерации

Национальный исследовательский ядерный университет «МИФИ»

Балаковский инженерно-технологический институт

ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ

Методические указания

по курсу « Химия»

всех форм обучения

Балаково 2014

Цель работы: изучить принцип работы гальванических элементов.

ОСНОВНЫЕ ПОНЯТИЯ

ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ НА ГРАНИЦЕ РАЗДЕЛА ФАЗ

В узлах кристаллических решеток металлов расположены ионы атомов. При погружении металла в раствор начинается сложное взаимодействие поверхностных ионов металла с полярными молекулами растворителя. В результате происходит окисление металла, и его гидратированные (сольватированные) ионы переходят в раствор, оставляя в металле электроны:

Ме + m H 2 O Me(H 2 O)+ ne -

Металл заряжается отрицательно, а раствор - положительно. Возникает электростатическое притяжение между перешедшими в жидкость гидратированными катионами и поверхностью металла и на границе металл-раствор образуется двойной электрический слой, характеризующийся определенной разностью потенциалов -электродным потенциалом.

Рис. 1 Двойной электрический слой на границе раздела металл - раствор

Наряду с этой реакцией протекает обратная реакция - восстановление ионов металла до атомов.

Me(H 2 O)+ ne
Ме + m H 2 O -

При некотором значении электродного потенциала устанавливается равновесие:

Ме + m H 2 O
Me(H 2 O)+ ne -

Для упрощения воду в уравнение реакции не включают:

Ме
Me 2+ +ne -

Потенциал, устанавливающийся в условиях равновесия электродной реакции, называется равновесным электродным потенциалом.

ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ

Гальванические элементы – химические источники электрической энергии. Они представляют собой системы, состоящие из двух электродов (проводниковIрода), погруженных в растворы электролитов (проводниковIIрода).

Электрическая энергия в гальванических элементах получается за счет окислительно-восстановительного процесса при условии раздельного проведения реакции окисления на одном электроде и реакции восстановления на другом. Например, при погружении цинка в раствор сульфата меди цинк окисляется, а медь восстанавливается

Zn + CuSO 4 = Cu + ZnSO 4

Zn 0 +Cu 2+ =Cu 0 +Zn 2+

Можно провести эту реакцию так, чтобы процессы окисления и восстановления были пространственно разделены; тогда переход электронов от восстановителя к окислителю будет происходить не непосредственно, а через электрическую цепь. На рис. 2 представлена схема гальванического элемента Даниэля-Якоби, электроды погружены в растворы солей и находятся в состоянии электрического равновесия с растворами. Цинк, как более активный металл, посылает в раствор больше ионов, чем медь, в результате чего цинковый электрод за счет остающихся на нем электронов заряжается более отрицательно, чем медный. Растворы разделены перегородкой, проницаемой только для ионов, находящихся в электрическом поле. Если электроды соединить между собой проводником (медной проволокой), то электроны с цинкового электрода, где их больше, будут по внешней цепи перетекать на медный. Возникает непрерывный поток электронов - электрический ток. В результате ухода электронов с цинкового электрода Znцинк начинает переходить в раствор в виде ионов, восполняя убыль электронов и стремясь тем самым восстановить равновесие.

Электрод, на котором протекает окисление, называется анодом. Электрод, на котором протекает восстановление, называется катодом.

Анод (-) Катод (+)

Рис. 2. Схема гальванического элемента

При работе медно-цинкового элемента протекают следующие процессы:

1) анодный – процесс окисления цинка Zn 0 – 2e→Zn 2+ ;

2) катодный – процесс восстановления ионов меди Cu 2+ + 2e→Cu 0 ;

3) движение электронов по внешней цепи;

4) движение ионов в растворе.

В левом стакане - недостаток анионов SO 4 2- , а в правом – избыток. Поэтому во внутренней цепи работающего гальванического элемента наблюдается перемещение ионов SO 4 2- из правого стакана в левый через мембрану.

Суммируя электродные реакции, получаем:

Zn + Cu 2+ = Cu + Zn 2+

На электродах протекают реакции:

Zn+SO 4 2- →Zn 2+ +SO 4 2- + 2e(анод)

Cu 2+ + 2e + SO 4 2- → Cu + SO 4 2- (катод)

Zn + CuSO 4 → Cu + ZnSO 4 (суммарная реакция)

Схема гальванического элемента: (-) Zn/ZnSO 4 | |CuSO 4 /Cu(+)

или в ионном виде: (-) Zn/Zn 2+ | |Cu 2+ /Cu(+), где вертикальная черта обозначает поверхность раздела между металлом и раствором, а две черты - границу раздела двух жидких фаз - пористую перегородку (или соединительную трубку, заполненную раствором электролита).

Максимальная электрическая работа (W) при превращении одного моля вещества:

W=nF E, (1)

где ∆E- ЭДС гальванического элемента;

F- число Фарадея, равное 96500 Кл;

n- заряд иона металла.

Электродвижущая сила гальванического элемента, может быть рассчитана как разность потенциалов электродов, составляющих гальванический элемент:

ЭДС= Е окис. – Е восст = Е к – Е а,

где ЭДС- электродвижущая сила;

Е окисл. – электродный потенциал менее активного металла;

Е восст - электродный потенциал более активного металла.

СТАНДАРТНЫЕ ЭЛЕКТРОДНЫЕ ПОТЕНЦИАЛЫ МЕТАЛЛОВ

Абсолютные значения электродных потенциалов металлов непосредственно определить невозможно, но можно определить разность электродных потенциалов. Для этого находят разность потенциалов измеряемого электрода и электрода, потенциал которого известен. Наиболее часто в качестве электрода сравнения принято использовать водородный электрод. Поэтому измеряют ЭДС гальванического элемента, составленного из исследуемого и стандартного водородного электрода, электродный потенциал которого принимают равным нулю. Схемы гальванических элементов для измерения потенциала металла таковы:

Н 2, Pt|H + || Мe n + |Me

Т. к. потенциал водородного электрода, условно равен нулю, то ЭДС измеряемого элемента будет равна электродному потенциалу металла.

Стандартным электродным потенциалом металла называют его электродный потенциал, возникающий при погружении металла в раствор собственного иона с концентрацией (или активностью) , равной 1 моль/л, при стандартных условиях, измеренный по сравнению со стандартным водородным электродом, потенциал которого при 25 0 С условно принимается равным нулю. Располагая металлы в ряд по мере возрастания их стандартных электродных потенциалов (Е°), получаем так называемый ряд напряжений.

Чем более отрицательное значение имеет потенциал системы Ме/Ме n+ , тем активнее металл.

Электродный потенциал металла, опущенного в раствор собственной соли при комнатной температуре, зависит от концентрации одноименных ионов и определяется по формуле Нернста:

, (2)

где E 0 – нормальный (стандартный) потенциал, В;

R – универсальная газовая постоянная, равная 8,31Дж(моль.К);

F– число Фарадея;

Т - абсолютная температура, К;

С - концентрация ионов металла в растворе, моль/л.

Подставляя значения R, F, стандартное температуры Т=298 0 К и множитель перехода от натуральных логарифмов (2,303)к десятичным, получают удобную для применения формулу:

(3)

КОНЦЕНТРАЦИОННЫЕ ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ

Гальванические элементы могут быть составлены из двух совершенно одинаковых по природе электродов, погруженных в растворы одного и того же электролита, но различной концентрации. Такие элементы называются концентрационными, например:

(-) Ag | AgNO 3 || AgNO 3 | Ag (+)

В концентрационных цепях для обоих электродов величины n и E 0 одинаковы, поэтому для расчета ЭДС такого элемента можно использовать

, (4)

где С 1 – концентрация электролита в более разбавленном растворе;

С 2 - концентрация электролита в более концентрированном растворе

ПОЛЯРИЗАЦИЯ ЭЛЕКТРОДОВ

Равновесные потенциалы электродов могут быть определены в условиях отсутствия в цепи тока. Поляризация - изменение потенциала электрода при прохождении электрического тока.

Е = Е i - Е p , (5)

где Е - поляризация;

Е i - потенциал электрода при прохождении электрического тока;

Е p - равновесный потенциал. Поляризация может быть катодной Е К (на катоде) и анодной Е A (на аноде).

Поляризация может быть:1) электрохимическая; 2) химическая.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ТРУДА

1. Опыты с неприятно пахнущими и ядовитыми веществами проводятся обязательно в вытяжном шкафу.

2. При распознавании выделяющегося газа по запаху следует направлять струю движениями руки от сосуда к себе.

3. Выполняя опыт, необходимо следить за тем, чтобы реактивы не попали на лицо, одежду и рядом стоящего товарища.

4. При нагревании жидкости, особенно кислот и щелочей, держать пробирку отверстием в сторону от себя.

5. При разбавлении серной кислоты нельзя приливать воду к кислоте, следует вливать кислоту осторожно, небольшими порциями в холодную воду, перемешивая раствор.

6. По окончании работы следует тщательно вымыть руки.

7. Отработанные растворы кислот и щелочей рекомендуется сливать в специально приготовленную посуду.

8. Все склянки с реактивами необходимо закрывать соответствующими пробками.

9. Оставшиеся после работы реактивы не следует выливать или высыпать в реактивные склянки (во избежание загрязнения).

Порядок выполнения работы

Задание 1

ИССЛЕДОВАНИЕ АКТИВНОСТИ МЕТАЛЛОВ

Приборы и реактивы: цинк, гранулированный; сульфат меди CuSO 4 , 0,1 н раствор; пробирки.

Кусочек гранулированного цинка опустите в 0,1 н раствор сульфата меди. Оставьте стоять спокойно в штативе и наблюдайте происходящее. Составьте уравнение реакции. Сделайте вывод, какой металл можно взять в качестве анода и какой - в качестве катода для следующего опыта.

Задание 2

ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ

Приборы и реактивы: Zn, Cu –металлы; сульфат цинка,ZnSO 4 , 1 М раствор; сульфат меди CuSO 4 , 1 М раствор; хлорид калия КCl, концентрированный раствор; гальванометр; стаканы; U- образная трубка, вата.

В один стакан налейте до ¾ объема 1М раствора соли металла, являющегося анодом, а в другой - такой же объем 1 М раствора соли металла, являющегося катодом. Заполните U- образную трубку концентрированным раствором КCl. Концы трубки закройте плотными кусочками ваты и опустите в оба стакана так, чтобы они погрузились в приготовленные растворы. В один стакан опустите пластинку металл- анод, в другую- пластинку металл- катод; смонтируйте гальванический элемент с гальванометром. Замкните цепь и отметьте по гальванометру направление тока.

Составьте схему гальванического элемента.

Напишите электронные уравнения реакций, протекающих на аноде и катоде данного гальванического элемента. Вычислите ЭДС.

Задание 3

ОПРЕДЕЛЕНИЕ АНОДА ИЗ УКАЗАННОГО НАБОРА ПЛАСТИНОК

Приборы и реактивы: Zn, Cu, Fe, Al –металлы; сульфат цинка,ZnSO 4 , 1 М раствор; сульфат меди CuSO 4 , 1 М раствор; сульфат алюминияAl 2 (SO 4) 3 1 М раствор; сульфат железаFeSO 4 , 1 М раствор; хлорид калия КCl, концентрированный раствор; стаканы; U- образная трубка, вата.

Составьте гальванические пары:

Zn/ZnSO 4 ||FeSO 4 /Fe

Zn / ZnSO 4 || CuSO 4 / Cu

Al/Al 2 (SO 4) 3 || ZnSO 4 /Zn

Из указанного набора пластинок и растворов солей этих металлов соберите гальванический элемент, в котором цинк являлся бы катодом (задание 2).

Составьте электронные уравнения реакций, протекающих на аноде и катоде собранного гальванического элемента.

Напишите окислительно-восстановительную реакцию, которая лежит в основе работы данного гальванического элемента. Вычислите ЭДС.

ОФОРМЛЕНИЕ ОТЧЕТА

Лабораторный журнал заполняется в ходе лабораторных занятий по мере выполнения работы и содержит:

дату выполнения работы;

название лабораторной работы и ее номер;

название опыта и цель его проведения;

наблюдения, уравнения реакций, схему прибора;

контрольные вопросы и задачи по теме.

КОНТРОЛЬНЫЕ ЗАДАНИЯ

1.Какие из указанных ниже реакций возможны? Написать уравнения реакций в молекулярном виде, составить для них электронные уравнения:

Zn(NO 3) 2 + Cu →

Zn(NO 3) 2 + Mg →

2. Составьте схемы гальванических элементов для определения нормальных электродных потенциалов Al/Al 3+ ,Cu/Cu 2+ в паре с нормальным водородным электродом.

3. Вычислите ЭДС гальванического элемента

Zn/ZnSO 4 (1M)| |CuSO 4 (2M)

Какие химические процессы протекают при работе этого элемента?

4. Химически чистый цинк почти не реагирует с соляной кислотой. При добавлении к кислоте нитрата свинца происходит частичное выделение водорода. Объясните эти явления. Составьте уравнения происходящих реакций.

5. Медь находится в контакте с никелем и опущена в разбавленный раствор серной кислоты, какой процесс происходит на аноде?

6. Составьте схему гальванического элемента, в основе которого лежит реакция, протекающая по уравнению: Ni+Pb(NO 3) 2 =Ni(NO 3) 2 +Pb

7. Марганцевый электрод в растворе его соли имеет потенциал 1,2313 В. Вычислите концентрацию ионов Mn 2+ в моль/л.

Время, отведенное на лабораторную работу

Литература

Основная

1. Глинка. Н.А. Общая химия: учеб. пособие для вузов. – М.:Интеграл – Пресс, 2005. – 728 с.

2. Коржуков Н. Г. Общая и неорганическая химия. – М.: МИСИС;

ИНФРА–М, 2004. – 512 с.

Дополнительная

3.Фролов В.В. Химия: учеб. пособие для втузов. – М.: Высш. шк., 2002. –

4. Коровин Н.В.. Общая химия: учебник для техн. направл. и спец. вузов. – М.: Высш. шк., 2002.–559с.: ил..

4. Ахматов Н.С. Общая и неорганическая химия: учебник для вузов. – 4-е изд., исправл.- М.: Высш. шк., 2002. –743 с.

5. Глинка Н.А. Задания и упражнения по общей химии. – М.: Интеграл –Пресс, 2001. – 240 с.

6. Метельский А. В. Химия в вопросах и ответах: справочник. – Мн.: Бел.Эн., 2003. – 544 с

гальванические элементы

Методические указания

к выполнению лабораторной работы

по курсу « Химия»

для студентов технических направлений и специальностей,

«Общая и неорганическая химия»

для студентов направления «Химическая технология»

всех форм обучения

Составили: Синицына Ирина Николаевна

Тимошина Нина Михайловна

Сегодня гальванические элементы являются одними из наиболее распространенных химических Несмотря на их недостатки, они активно используются в электротехнике и постоянно совершенствуются.

Принцип действия

Наиболее простой пример работы гальванического элемента выглядит так. В стеклянную банку с водным раствором серной кислоты погружают две пластины: одна - медная, вторая - цинковая. Они становятся положительным и отрицательным полюсами элемента. Если эти полюса соединить проводником, получится простейшая Внутри элемента ток будет течь от цинковой пластины, имеющей отрицательный заряд, к медной, заряженной положительно. Во внешней цепи движение заряженных частиц будет происходить в обратном направлении.

Под действием тока ионы водорода и кислотного остатка серной кислоты будут двигаться в разных направлениях. Водород будет отдавать свои заряды медной пластине, а кислотный остаток - цинковой. Так на зажимах элемента будет поддерживаться напряжение. В то же время на поверхности медной пластины будут оседать пузырьки водорода, который будет ослаблять действие гальванического элемента. Водород создает вместе с металлом пластины дополнительное напряжение, которое называется электродвижущей силой поляризации. Направление заряда этой ЭДС противоположно направлению заряда ЭДС гальванического элемента. Сами же пузырьки создают дополнительное сопротивление в элементе.

Рассмотренный нами элемент - это классический пример. В реальности подобные гальванические элементы просто не используются из-за большой поляризации. Чтобы она не происходила, при изготовлении элементов в их состав вводят специальное вещество, поглощающее атомы водорода, которое называется деполяризатором. Как правило, это препараты, содержащие кислород или хлор.

Преимущества и недостатки современных гальванических элементов

Современные гальванические элементы изготавливаются из разных материалов. Наиболее распространенный и знакомый нам тип - это угольно-цинковые элементы, применяемые в пальчиковых батарейках. К их плюсам можно отнести относительную дешевизну, к минусам - небольшой срок хранения и невысокую мощность.

Более удобный вариант - это щелочные гальванические элементы. Их еще называют марганцево-цинковыми. Здесь электролитом служит не сухое вещество типа угля, а щелочной раствор. Разряжаясь, такие элементы практически не выделяют газ, благодаря чему их можно изготавливать герметичными. Срок хранения таких элементов выше, чем угольно-цинковых.

Ртутные элементы похожи по своей конструкции на щелочные. Здесь применяют оксид ртути. Такие источники тока используют, например, для медицинской аппаратуры. Их преимущества - устойчивость к высоким температурам (до +50, а в некоторых моделях до +70 ˚С), стабильное напряжение, высокая механическая прочность. Недостаток - токсичные свойства ртути, из-за которых с отработавшими свой срок элементами нужно обращаться очень осторожно и отправлять на переработку.

В некоторых элементах применяют оксид серебра для изготовления катодов, но из-за дороговизны металла их использование экономически невыгодно. Более распространены элементы с литиевыми анодами. Они тоже отличаются высокой стоимостью, но имеют наибольшее напряжение среди всех рассмотренных типов гальванических элементов.

Еще один тип гальванических элементов - это концентрационные гальванические элементы. В них процесс движения частиц может протекать с переносом и без переноса ионов. Первый тип - это элемент, в котором два одинаковых электрода погружаются в разной концентрации, разделенные полупроницаемой перегородкой. В таких элементах ЭДС возникает благодаря тому, что ионы переносятся в раствор с меньшей концентрацией. В элементах второго типа электроды сделаны из разных металлов, а концентрация выравнивается за счет химических процессов, которые происходят на каждом из электродов. у этих элементов выше, чем у элементов первого типа.

Выбор редакции
Все чаще современному человеку выпадает возможность познакомиться с кухней др. стран. Если раньше французские яства в виде улиток и...

В.И. Бородин, ГНЦ ССП им. В.П. Сербского, Москва Введение Проблема побочных эффектов лекарственных средств была актуальной на...

Добрый день, друзья! Малосольные огурцы - хит огуречного сезона. Большую популярность быстрый малосольный рецепт в пакете завоевал за...

В Россию паштет пришел из Германии. В немецком языке это слово имеет значение «пирожок». И первоначально это был мясной фарш,...
Простое песочное тесто, кисло-сладкие сезонные фрукты и/или ягоды, шоколадный крем-ганаш — совершенно ничего сложного, а в результате...
Как приготовить филе минтая в фольге - вот что необходимо знать каждой хорошей хозяйке. Во-первых, экономно, во-вторых, просто и быстро,...
Салат «Обжорка «, приготовленный с мясом — по истине мужской салат. Он накормит любого обжору и насытит организм до отвала. Этот салат...
Такое сновидение означает основу жизни. Сонник пол толкует как знак жизненной ситуации, в которой ваша основа жизни может показывать...
Во сне приснилась крепкая и зеленая виноградная лоза, да еще и с пышными гроздьями ягод? В реале вас ждет бесконечное счастье во взаимной...